
Applying Automated Theorem Proving

To Computer Security

THESIS

Kelly McElroy, Capt, USAF

AFIT/GCS/ENG/08-16

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/08-16

Applying Automated Theorem Proving

To Computer Security

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Computer Science)

Kelly McElroy, B.S.C.S.

Capt, USAF

March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/08-16

Applying Automated Theorem Proving

To Computer Security

Kelly McElroy, B.S.C.S.

Capt, USAF

Approved:

/signed/ 3 Mar 2008

Dr. Rusty O. Baldwin (Chairman) date

/signed/ 3 Mar 2008

Lt Col Stuart H. Kurkowski, PhD (Member) date

/signed/ 3 Mar 2008

Dr. Barry E. Mullins (Member) date

/signed/ 3 Mar 2008

Dr. Henry B. Potoczny (Member) date

AFIT/GCS/ENG/08-16

Abstract

While more and more data is stored and accessed electronically, better access

control methods need to be implemented for computer security. Formal modelling

and analysis have been successfully used in certain areas of computer systems, such

as verifying the security properties of cryptographic and authentication protocols.

However, formal models for computer systems in cyberspace, like networks, have

hardly advanced. A highly regarded graduate textbook cites the Take-Grant model

created in 1977 as one of the “current” examples of security modelling and analysis

techniques. This model is rarely used in practice though.

This research implements the Take-Grant Protection model’s four de jure rules

and Can Share predicate in the Prototype Verification System (PVS) which automates

model checking and theorem proving. This facilitates the ability to test a given Take-

Grant model against many systems which are modelled using digraphs. Two models,

one with error checking and one without, are created to implement take-grant rules.

The first model that does not have error checking incorporated requires manual error

checking. The second model uses recursion to allow for the error checking. The

Can Share theorem requires further development.

iv

Acknowledgements

I would like to thank all my friends for their unwavering support during the last few

months, even if their eyes always glazed over after hearing an explanation of my thesis.

I would like to thank those special few that actually read my thesis. Special mention

goes to:

Fernando for being my rock and being very supportive in and outside the gym.

I think he bore the brunt of my thesis problems.

For Bobo–you made me laugh and look at the positive side of the thesis.

For UB, for whom the thesis took time away from and didn’t chew up too many

things to show his displeasure.

Finally, I would like to acknowledge the great effort of Dr. Baldwin for keeping me

on track to finish when there were bumps on the research road.

Kelly McElroy

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Lists . x

List of Abbreviations . xi

I. Introduction . 1
1.1 Background . 1

1.2 Goals of Research . 2
1.3 Documentation Overview 2

II. Automated Theorem Proving to Improve Computer Security . . . 4

2.1 Introduction . 4
2.2 Background . 4

2.3 Current Take-Grant Protection Model Research 9
2.4 Current Research . 17
2.5 Summary . 19

III. Specifying the Take-Grant Model in PVS 20

3.1 Introduction . 20
3.2 Take-Grant Model One - No Error Checking 21

3.2.1 Common Imported Theories 21

3.2.2 Take Rule . 29
3.2.3 Grant Rule . 33
3.2.4 Create Rule . 36
3.2.5 Remove Rule 39

3.3 Take-Grant Model Two - Error Checking 42

3.3.1 Common Imported Theories 42

3.3.2 Take Rule . 51
3.3.3 Grant Rule . 56
3.3.4 Create Rule . 61
3.3.5 Remove Rule 65

3.4 Can Share Algorithm . 69

3.5 Contributions to PVS Digraph Library 73

3.6 Summary . 75

vi

Page

IV. Proving the Take-Grant Model in PVS 76

4.1 Introduction . 76
4.1.1 PVS Proof Representation 76

4.1.2 PVS Commands 78
4.2 Proving the Type Correctness Conditions 79

4.3 Take-Grant Model One - No Error Checking - Proofs . . 83

4.4 Take-Grant Model Two - Error Checking - Proofs 84

4.5 Can Share Algorithm . 93

4.5.1 Theories Imported for Can Share 93

4.5.2 Can Share Code 102
4.6 Summary . 110

V. Conclusions . 111
5.1 Significance of Findings 111

5.2 PVS Issues . 112
5.3 Future Research . 112

Appendix A. PVS Theories . 114

Bibliography . 115

vii

List of Figures
Figure Page

2.1. Take Rule [Bis96] . 7

2.2. Grant Rule [Bis96] . 8

2.3. Create Rule [Bis96] . 8

2.4. Remove Rule [Bis96] . 8

2.5. Post Rule [Bis96] . 9

2.6. Pass Rule [Bis96] . 10

2.7. Spy Rule [Bis96] . 10

2.8. Find Rule [Bis96] . 10

2.9. Conspirators in an information flow modified from [Bis96] . . . 12

2.10. The corresponding acting graph 13

2.11. A Take-Grant Protection Graph: G0 14

2.12. First conspirator: e . 15

2.13. Second conspirator: c . 15

2.14. C conspires twice . 15

2.15. Third conspirator: b . 16

2.16. Conspiracy Graph: G1, with x as the last conspirator 16

3.1. Results of theorem Take Edge 32

3.2. Results of theorem Take Edge L 32

3.3. Results of theorem Grant Edge 35

3.4. Results of theorem Grant Edge L 36

3.5. Create Theorem . 39

3.6. Remove Theorem . 42

3.7. Example 1 of Can Share Graph G0 69

3.8. Example 2 Can Share Graph G0 72

3.9. Partial Digraph Theory. 73

viii

Figure Page

3.10. Partial Labelled Digraph Theory 74

4.1. RemoveEdge TCC1 . 79

4.2. RemoveEdge TCC1 Proof . 80

4.3. AddEdge TCC1 . 80

4.4. AddVert TCC1 . 81

4.5. InitGraph TCC1 . 81

4.6. set Node e1 TCC1 . 82

4.7. set Node e1 TCC2 . 82

4.8. takerule TCC1 . 82

4.9. takerule TCC2 . 83

4.10. Take and Grant Rule Theorems 83

4.11. Create and Remove Theorems 84

4.12. Take, Grant, Create and Remove Theorems 85

4.13. Take Picture Proof . 89

4.14. Grant Picture Proof . 90

4.15. Create Picture Proof . 91

4.16. Remove Picture Proof . 92

ix

List of Lists
Page

3.1 Definitions Theory . 21

3.2 Add Edge Theory . 23

3.3 Graph Init Theory . 24

3.4 TG Lemma Init Take Theory 25

3.5 Grant Graph Init Theory . 26

3.6 TG Lemma Init Grant Theory 27

3.7 Remove Edge Theory . 28

3.8 Take Rule . 29
3.9 Grant Rule . 33
3.10 Create Rule . 36
3.11 Remove Rule . 40
3.12 tgDefinitions Theory . 42

3.13 cDefinitions Theory . 45

3.14 rDefinitions Theory . 47

3.15 Node ops Theory . 48

3.16 RemoveEdge Theory . 50

3.17 Take Rule . 51
3.18 Grant Rule . 56
3.19 Create Rule . 61
3.20 Remove Rule . 65
3.21 Can Share Algorithm . 69

4.1 PVS Sequent Example [SORSC99] 77

4.2 Execution of the Take Rule in PVS: Take Rule Taken: Step 1 . 85

4.3 Execution Take Rule Taken: Step 2 86

4.4 Execution Take Rule Taken.1 86
4.5 Execution Take Rule Taken.3.2.1 87
4.6 Execution Take Rule Taken.3.2.1 87
4.7 Execution Take Rule Taken.3.2.1 88
4.8 csDefinitions Theory . 93

4.9 cNode ops Theory . 96

4.10 tgedge Theory . 100

4.11 Code for Can Share . 102

x

List of Abbreviations
Abbreviation Page

ORNL Oak Ridge National Laboratory 1

PVS Prototype Verification System 2

CML Classical Mathematical Logic 5

FTP File Transfer Protocol . 12

UAC Unified Access Control . 18

TCB Trusted Computing Base 18

RBAC Role-Based Access Control 19

ABAC Attribute Based Access Control 19

TCC Type Correctness Condition 46

xi

Applying Automated Theorem Proving

To Computer Security

I. Introduction

1.1 Background

Formal modelling and analysis have long been successfully used to establish

the security properties of cryptographic and authentication protocols [SM93]. Those

methods have seen steady progress in the methods and fundamental theories they are

based on as well as continued usage demonstrating their value for certain classes of

systems. However, formal modelling and analysis of security properties of systems in

cyberspace, such as networks, have not significantly advanced since the 1980’s [BM07].

The concept of cybercraft or cybertargeting is so recent, very few formal models

have been proposed. One paper, “Towards Formal Specification and Verification in

Cyberspace” [APN01], which describes a formal model for a simple agent architecture

in a multi-agent system offers, a manual algorithm for model checking. Apart from

this 2001 model, very few models have been proposed for cybercraft or cybertargeting.

However, there are several companies researching how best to apply formal models

to secure cyberspace. The Oak Ridge National Laboratory (ORNL), whose mission

is to “conduct basic-applied research toward building truly secure, trusted systems

beyond best practices,” uses formal models to model system security [Oak08].

Nonetheless a highly regarded graduate textbook in this area, [Bis03] for exam-

ple, uses the Take-Grant model (1977) and the Schematic Protection Model (1988)

as “current” examples of security modelling and analysis techniques [BM07]. Even

though improvements have been made, these models are rarely used in practice to

analyze real systems and no other proposed models have significantly improved the

capability to analyze system security properties. The demonstrated usefulness of

formal modelling and analysis in the security and safety of protocols and the corre-

1

sponding slow progress in establishing analogous properties in the cyber arena indicate

a new approach may be warranted [BM07].

1.2 Goals of Research

The fundamental goal of this research is to develop a consistent logical frame-

work which allows formal modelling, analysis and reasoning concerning cyberspace

security. To do this, the well known and defined Take-Grant Protection model is used

as a prototype security policy.

The first goal is to automate the Take-Grant rules, so applying them to realistic

problems is easier. The Prototype Verification System (PVS) from SRI [SRI08] uses

a combination model checker/theorem prover as a reasoning “engine” and is used to

automate this process.

The second goal is to prove the consistency of formal model specifications and

prove an application of the rules produces a valid Take-Grant model.

The modelled system is specified as a digraph, with rights and privileges deter-

mined by the edges. This follows the original conception of the Take-Grant Model.

Thus, this research produces a Take-Grant protection model to correctly imple-

ment a security policy. Performance prediction, as well as identifying vulnerabilities,

identifying the operation conditions for those performance predictions can be added

to this model.

1.3 Documentation Overview

This document contains five chapters. This chapter gives background on formal

modelling and analysis of computer systems. It also defines the purpose of the research

to automate the Take-Grant Protection Model in PVS. Chapter 2 reviews current

literature and the Take-Grant model as well as current research into the Take-Grant

model. Chapter 3 specifies the two models to implement the Take-Grant model and

the description of the Can Share predicate algorithm. Chapter 4 presents the proofs

2

for the two specification models and the code to implement the Can Share algorithm.

Chapter 5 contains the conclusions of the research and identifies future research areas.

3

II. Automated Theorem Proving to Improve Computer

Security

2.1 Introduction

This chapter covers the background of computer security and formal models.

Also the current research into the Take-Grant Protection model is discussed, which

is the focus of this research. Finally current research into formal models for access

control is presented.

2.2 Background

Computer security is increasingly important as more of our data are stored and

accessed electronically, which means better access control methods need to be

implemented. Access control protects resources by explicitly enabling or restricting

the use of that resource [Nat96]. Access is generally based on a security policy which

specifies what is or is not allowed. Computer-based access controls are called logical

access controls [Nat96]. Formal models of access control policies are usually based

on propositional and predicate logic, otherwise known as classical logic, where the

“truth” about some aspect of the system is reduced to TRUE, FALSE, or UNDE-

CIDABLE. That is, a property holds (is TRUE), does not hold (is FALSE), or it

cannot be determined if it holds (is UNDECIDABLE) [BM07]. “[T]o specify, verify,

and reason about information security and information assurance, we need a right

fundamental logic system to provide us with a logical validity criterion of normative

reasoning as well as formal representation and specification language [CM06].” Fun-

damental logic must support truth-preserving and relevant reasoning in the sense of

the conditional, ampliative reasoning, semi-complete reasoning, semi-consistent rea-

soning, and normative reasoning. The essential requirements to support fundamental

logic are [CM06]:

• relevant reasoning - the premise must be relevant to the conclusion and vice

versa.

4

• truth-preserving reasoning - an argument is valid if and only if it is impossible

for all its premises to be true while its conclusion is false in the sense of the

conditional.

• ampliative reasoning - the truth of the conclusion of the reasoning should be

recognized after the completion of the reasoning process but not be invoked in

deciding the truth of premises of the reasoning.

• semi-complete and semi-consistent reasoning - understanding that the current

knowledge may be incomplete and or inconsistent in many ways, there is no

evidence for deciding the truth of either a proposition or its negation and or

whether it directly or indirectly includes contradictions.

• normative reasoning - often describes only ideal situations, even when they are

used in actual situations, therefore logic must be able to distinguish between

what ought to be done and what is the case.

Classical mathematical logic (CML) cannot satisfy any of the fundamental logic

criteria because they are not necessarily relevant, truth-preserving in the sense of

the conditional, it is circular, not ampliative, and reasoning under inconsistency is

impossible. Furthermore, since relevance between the premises and conclusion of an

argument is not accounted for by the classical validity criterion in CML, reasoning

based on CML is not necessarily relevant [CM06]. Therefore, reasoning about systems

with access control properties requires a different logic system.

Modal logic broadly defines a family of logics that capture “modes” of truth.

Modal logic considers not only truth and falsity applied to what is or is not so as

things actually stand, but considers what would be so if things were different, i.e.,

modal logic is concerned with truth or falsity in possible worlds as well as the real

one [HC96]. A mode is an expression used to qualify the truth of a judgment, generally

based on the morals applied to it [Gar07]. The best-known logics of modal logic are

Modal, Deontic, Temporal, Epistemic, and Relevance. According to [Gar07]:

• Modal logic is the logic of necessity and possibility.

5

• Deontic logic is the logic of obligation, permission, and forbidden.

• Temporal logic is the logic of time-“it will be the case”, “it will always be the

case”, “it has always been the case”, and “it was the case”.

• Epistemic logic is the logic of belief and knowledge.

Relevance logic reasons about systems that have contradictory premises. Modal logics

have similar rules and a variety of symbols. They are more expressive in their expres-

sive and reasoning ability in analysis. However, the question still remains whether

they are more suitable than classical logic to accurately model protection schemes.

Even though modal logics show promise, fundamental research automating the

analysis of protection schemes based on CML still need a thorough examination as

well.

“One of the most critical and least understood aspects of protection is the

exercise of control over the movement of rights between subjects of a system [LM82].”

An access control scheme specifies the state-transition rules of a system based on that

scheme; a set of them is an access control model [TL04]. A well-known access control

model is the Take-Grant Protection Model. The Take-Grant Protection model has two

components: “a finite, labelled, directed two color graph representing the protection

state of an operating system and a finite set of graph transformation rules with which

the protection state may be changed [Sny81].” The distribution of rights among the

various subjects of a system at a given moment is called the protection state of the

system [LM82]. The Take-Grant model is made up of subjects and objects that have

rights. Only subjects can use rights to invoke protection system rules to change the

protection state of the system. Objects may hold rights, but cannot invoke rules. The

Take-Grant model has four rewriting rules called de jure rules: Take ≡ t,

Grant ≡ g, Create and Remove, which changes the protection state. The Take rule

allows the subject invoking it to obtain the rights of another subject or object it has

take rights over. The Grant rule allows a subject to grant rights it possesses to another

6

subject or object, assuming it has grant rights over that subject or object. Create

forms a new subject/object and the Remove rule removes rights to a subject/object.

The following rule descriptions are due to [Bis96], and demonstrate the de jure

rules. Consider a directed protection graph in which the labelled edges represent

rights and vertices represent entities. Entities are either subjects, represented by ●,

or objects, represented by ©. Vertices that could be either subjects or objects are

represented by
⊗

. The ` symbol denotes the graph G1 can be derived from G0 in

one step.

An example of the Take rule is shown in Figure 2.1. In the protection graph G0,

let x, y, z be three distinct vertices, where x is a subject. Let there be an edge from

x to y labelled t, an edge from y to z labelled β, and α ⊆ β, where β is the set of

rights y possesses over z and α is a subset of those rights. Then the Take rule defines

a new graph G1 by adding an edge to the protection graph from x to z labelled α.

The rule is written “x takes (α to z) from y [Bis96].”

Figure 2.1: Take Rule [Bis96]

The Grant rule is shown in Figure 2.2 [Bis96]. As before, x, y, z are distinct

vertices where x is a subject. Let there be an edge from x to y labelled g, an edge

from x to z labelled β, and α ⊆ β. The Grant rule defines a new graph G1 by adding

an edge to the protection graph from y to z labelled α. The rule is written “x grants

(α to z) to y [Bis96].”

The Create rule is shown in Figure 2.3 [Bis96]. In protection graph G0, x is a

subject and α ⊆ R, where R is the set of all rights defined for this system. The Create

7

Figure 2.2: Grant Rule [Bis96]

rule defines a new graph G1 by adding a new vertex y to the graph and an edge from

x to y labelled α. The rule is written “x creates (α to a new vertex) y [Bis96].”

Figure 2.3: Create Rule [Bis96]

An example of the Remove rule is shown in Figure 2.4 [Bis96]. Let there be

an explicit edge from x to y labelled β with α ⊆ β. Then Remove defines a new

graph G1 by deleting the α labels to β. If β becomes empty as a result, the edge

itself is deleted. The rule is written “x removes (α to) y [Bis96].” The Take-Grant

Figure 2.4: Remove Rule [Bis96]

model can determine the safety of a specific system in linear time [Bis03]. A policy

is considered safe if a system never has unauthorized transfers of rights. Safety refers

to the abstract model while security refers to the implementation of the model. The

reason for the two different terms is that a safe system can be made unsecure through

implementation. The terms used specifies where the error lies [Bis03].

8

2.3 Current Take-Grant Protection Model Research

The Take-Grant Protection Model has been extended in many ways, but has

yet to have modal logic applied to it. After the Take-Grant Protection Model was

introduced in 1976 the first modifications to it was by [BS79]. Transfer methods called

de jure and de facto were identified. The name de jure was given to the operations

already defined: Take, Grant, Create, Remove and the model was extended to include

de facto or implicit transfers in the operations: Post, Pass, Spy, and Find.

De jure captures the direct authority to read information while de facto transfers

refer to a user acquiring the information without getting direct authority to read

it [BS79]. The de jure rules change the protection state of the graph while the de

facto rules, model what happens when operations occur but do not change the graph

state [FB96]. The following examples of the de facto rules: Post, Pass, Spy, and Find

are from [Bis96].

An example of the Post rule is shown in Figure 2.5. [Bis96]

Figure 2.5: Post Rule [Bis96]

In a protection graph on the left, let there be an edge from x to y labelled r,

an edge from z to y labelled w. The Post rule defines the graph on the right with an

implicit edge from x to z labelled r. The rule is then written “z posts to x through

y [Bis96].”

An example of the Pass rule is shown in Figure 2.6 There is an edge from y to

x labelled w and an edge from z to y labelled r. The Pass rule defines the new graph

on the right with an implicit edge from x to z labelled r. The rule is then written “y

passes from z through x [Bis96]”.

9

Figure 2.6: Pass Rule [Bis96]

The Spy rule is shown in Figure 2.7 [Bis96]. In the left protection graph there

is an edge from x to y labelled r, and an edge from y to z labelled r. The Spy rule

defines the graph on the right with an implicit edge from x to z labelled r. The rule

is written “x spies on z using y [Bis96].”

Figure 2.7: Spy Rule [Bis96]

The Find rule is shown in Figure 2.8 [Bis96]. An edge from y to x labelled w,

an edge from z to y labelled w results in a “find” which the new graph on the right

shows with an implicit edge from x to z labelled r. The rule is written “x finds from

z through y [Bis96].”

Figure 2.8: Find Rule [Bis96]

The predicate Can Know uses the de facto rules, while the predicate Can Share

uses the de jure rules [BS79]. The Can Know predicate is true when an implicit edge

10

can be added by means of using the de facto rules. The Can Know is the de facto

version of Can Share [Bis95]. The Can Share predicate is true when an edge can

be explicitly added by means of using the de jure rules. In [Sny81], the predicate

Can Steal captures “the notion that a subject vertex acquires a new right without

cooperation from an original owner” while the Can Share predicate assumes cooper-

ation from all users [Sny81].

[Bis81] applies the Take-Grant Protection Model to a hierarchical protection

system with the focus on transfer of information and authority instead of rights.

Conditions are established to make the hierarchical system secure no matter how

many of its subjects are corrupt. The model was developed under the assumption

that no user should be able to break security, an assumption not present in earlier

Take-Grant models of hierarchical protection systems.

[LM82] recognized that the Take-Grant Protection Model could not enforce

unidirectional channels–information was free to flow from one subject to another, ei-

ther directly or indirectly. Because the unidirectional transfer of rights limits the

applicability of the model, [LM82] extended it to include Take-Receive which limits

the flow of rights. However, because Take-Receive method is a simplification of the

“Send-Receive” transport control mechanism used in the Operation Control protec-

tion scheme [Min78], it was not proposed as a control mechanism for a real system

but to demonstrate how to avoid necessarily symmetric flows of rights in a real sys-

tem [LM82].

Bishop combines the notion of theft with the notion of information flow be-

tween two objects extending the idea of conspiracy to the theft of information, using

the de facto rules [Bis95]. Most other papers referenced are concerned with subject

only “thefts.” A new predicate Can Snoop is the de facto version of Can Steal.

Can Snoop is true when there is no cooperation on the part of the snoopee with

the snooper. With this extension the Take-Grant Model can model very practical

concepts and is no longer simply a theoretical tool.

11

Figure 2.9: Conspirators in an information flow modified from [Bis96]

The idea of “conspirators” has also been extended to information flow [Bis96].

The precise bound on the number of actors required for information to be transferred

from one vertex to another are established. Bishop demonstrated conspirators to

information flow in a small local network using the File Transfer Protocol (FTP). A

simplified example follows. Using the network configuration in Figure 2.9, the number

of conspirators needed to make a copy of the file x and place it on z is determined.

All information transfers are along implicit edges which needs the following abstract

representation [Bis96]: subjects represent hosts, objects represent files, and permission

for an entity to retrieve or access files is represented by an explicit read (r) edge from

either host to host or host to file. There are five hosts: p, q, y, v, and z.

To find the number of conspirators needed for the original protection, G0, graph

shown in Figure 2.9 a corresponding acting graph is developed. This graph consists of

vertices corresponding to access sets in the original graph G0 with edges corresponding

to paths along which the focus of each access set can pass information acting alone

[Bis96].

Given a protection graph G0 with subject vertices p, q, v, z and y, an acting

graph G1, Figure 2.10, is generated with vertices p, q, v, z and y. Each vertex in G1 is

12

Figure 2.10: The corresponding acting graph

associated with the access sets I(y) and T (y) from G0 where I(y) is an initial access

set containing y and all vertices to which y initially or rw-initially spans [Bis96].

T (y) is the terminal access set containing y and all vertices to which y terminally

or rw-terminally spans [Bis96]. An initial span of a subject v0 is a tg-path between

v0 and vn with an associated word in {−→t ∗−→g ⋃
ν }, where ν is a null-span, and rw-

initially spans if there is an rwtg-path between v0 and vn with associated word in

{−→t ∗−→w }⋃{ν} [Bis96]. A terminal span of a subject v0 is a tg-path between v0 and

vn with an associated word in {−→t ∗} and rw-terminally spans if there is an rwtg-path

between v0 and vn with associated word in {−→t ∗−→r } [Bis96].

To determine the acting graph G1, the access sets have to be built for G0, which

are:
I(p) = {p} T (p) = {x} I(z) = {z, y} T (z) = {z, v, x′} I(q) = {q, y}
T (q) = {p, q, y} I(v) = {v} T (v) = {p, v} I(y) = {y} T (y) = {y}

T (y) is the maximal set of vertices from which y can obtain information, and

I(y) is the maximal set of vertices to which y can pass rights or information. These

sets are not necessarily identical and this adds significant complexity to the conspir-

acy problem [Bis96]. Next the sets 4(a, b) for each pair of vertices a and b are built

from G0 access sets. The set 4(a, b) is defined to be all vertices in I(a)
⋂

T (b) except

13

those vertices y which are information gates (i.e., T (x) = I(x) = x). This means the

set 4 includes only those vertices to which the foci can pass (or receive) information

with the foci being the only actors. The non-empty sets are

4(p, q) = {p}, 4(p, v) = {p}, 4(q, y) = {y}, 4(z, q) = {y},
4(z, y) = {y}, 4(v, z) = {v}, 4(y, q) = {y}

From these sets the acting graph, G1, is built and is shown in Figure 2.10. Consider

the information flow from x to x’ in Figure 2.9. In this case, Ix = {p} and T ′
x = {z}.

The only path between p and z has three vertices (p, v, and z) in Figure 2.10, so the

minimum number of actors necessary and sufficient to move the information from x

to x’ is 3 (with p, v, and u being the three actors) [Bis96].

A key factor in information security is the ability to identify useable metrics to

measure the strength of a security policy [Wan05]. One metric that can be determined

in the Take-Grant model is the amount of cooperation required to share or steal rights.

This is the number of users required to initiate rules for a particular edge to be added

to a graph.

An example follows starting with G0 shown in Figure 2.11 to demonstrate how

many conspirators are needed to witness Can Share(r,x,y,G0), which is read ‘can

subject x obtain r (read) rights over subject y’? The example is modified from [Bis03].

Figure 2.11: A Take-Grant Protection Graph: G0

14

The first conspirator is e which grants (r to y) to d, as shown in Figure 2.12.

Figure 2.12: First conspirator: e

The second conspirator, c, takes r to y from d, as shown in Figure 2.13.

Figure 2.13: Second conspirator: c

Then c grants (r to y) to b, as shown in Figure 2.14.

Figure 2.14: C conspires twice

15

The third conspirator is b which grants (r to y) to a, as shown in Figure 2.15,

and

Figure 2.15: Third conspirator: b

finally, the last conspirator x takes (r to y) from a, is shown in Figure 2.16

Figure 2.16: Conspiracy Graph: G1, with x as the last conspirator

[Sny81] derived exact conspiracy measurements for arbitrary protection graphs

and presented the first algorithm for discovering minimum conspiracy. This conspiracy

graph can be evaluated in linear-time, and requires n2 operations for an n subject

graph to fill the edges.

The Take-Grant model has also been represented as a Petri net [Mar93]. A Petri

net is a “graph with two types of nodes (bipartite graphs), transitions and places,

where the arcs connect either transitions to places or places to transitions [JMS06].”

16

By implementing the Take-Grant model in a Petri net it is shown there is an efficient

algorithm to determine the cooperation required to share or steal rights in linear

time. The algorithm found all rights a subject can steal with the help of a given set

of conspirators to be 3n + O(L) where L is the number of labels Take ≡ t and Grant

≡ g in the initial protection graph [Mar93].

2.4 Current Research

The demonstrated usefulness of formal modelling and analysis in the security

and safety of protocols and the corresponding lack of progress in establishing analo-

gous properties in the cyber arena indicate a new approach may be warranted [BM07].

A protection model that can verify whether a given protection scheme correctly

implements a security policy, performance prediction, as well as identifying vulner-

abilities, identifying the operation condition assumptions for those performance pre-

dictions may require a form of modal logic be applied to overcome the deficiencies of

classical mathematical logic.

To implement access control, a security policy must be defined. Leiwo [LZ97]

and Cuppens [CS96] use formal models to define security policies. Leiwo’s [LZ97] for-

mal model documents and standardize information security requirements by dividing

security into objectives, strategies, and policies that are refined into concrete protec-

tion measure specifications. “The model assumes a hierarchical, layered, information

security development organization and specifies vertical and horizontal harmonization

functions in order to establish cost effective protection [LZ97].” The vertical dimen-

sion provides each layer a common view of requirements. The horizontal dimension

identifies similar security requirements at each layer which simplifies their implemen-

tation and maintenance. This approach starts with a formal model that incorpo-

rates the total security requirements to establish cost effective protection. Whereas

Leiwo [LZ97] focuses on defining the security policy, Cuppens [CS96] focuses on the

formalization of security policies with language specifications.

17

Cuppens scheme is domain-independent and reusable. Consider a generic cor-

porate multilevel security policy whose objective is to determine if the policy system

conforms to a specific set of regulations. A regulation may be viewed as being com-

posed of agents, events, and objects of the system to be regulated. Regulations defin-

ing what actions of the agents are permitted, obliged or prohibited to do [CS96]. Two

classes of constraints are identified: agent enforced constraints on actions on system

objects and agent enforced constraints on interaction with other agents [CS96]. To

describe the regulations, a logic based approach is used that incorporates deontic and

temporal modal logic concepts with organizational concepts of responsibility, delega-

tion, actions and events. For example, “Every organization which holds some secret

documents is obliged [deontic] to designate an agent who is responsible [organi-

zational] for preserving these documents” and “Before [temporal] every meeting

[event], the organizer of this meeting is obliged [deontic] to establish [action] a list

of all participants in this meeting [CS96]”. Violations of policy can also be specified

in this model.

La Padula [Pad90] discusses a domain-independent formal model which imple-

ments a new approach to computer security using the “Unified Access Control” (UAC)

framework developed at MITRE. UAC permits flexibility in choosing and specifying

security policies for a secure system because all access control is based on a small

set of fundamental concepts. The UAC framework is generalized for “computer ac-

cess control and explicitly recognizes the fundamental components for access control-

attributes, rules, and authority, and relates them in a utilitarian manner [Pad90].”

The only difference in the formal model (which is derived from the UAC framework)

compared to traditional models is that the rules for access control are a separate

entity from the model of the Trusted Computing Base (TCB) where certain sub-

jects, objects, processes, are exempt from the security policy so as to carry out their

functions [Pad90]. The model does not encumber rules with the details of an actual

system, allows the reconfiguration of security policies without reevaluating assurance,

and has flexibility in implementation.

18

The security policy should describe the type of access control to be implemented

in the system. Kolaczek [Kol02] realizes the limitations of traditional access control

and applies deontic logic to role-based access control (RBAC), which is based on the

job a user holds, not the user’s identity. Typical RBAC would simply either allow

access or not. However, in reality that is generally not how access is qualified, which

the use of deontic logic allows. Attribute based access control (ABAC), grants access

control based on attributes associated with the user and typically uses temporal and

deontic logic. However, most security policies focus on access control which does not

necessarily protect the flow of information.

Sabelfield [SM03] compared three decades of research on information-flow secu-

rity, focusing mostly on work that uses static program analysis to enforce information-

flow policies. He concludes that current security measures such as access control and

encryption do not restrict information flow and neither do language-based techniques,

in particular, program semantics and analysis for the specification and enforcement

of security policies for data confidentiality [SM03].

Thus information flow along with access control are both needed. The Take-

Grant model, with de jure and de facto rules, can support a formal model that consid-

ers both those needs. Current research suggests applying modal logic to formal models

may be necessary to significantly advance formal security modelling capabilities.

2.5 Summary

This chapter covered formal modelling and why it is necessary for security poli-

cies, which essentially determines access control for a system. The Take-Grant Pro-

tection model rules used in this research were also discussed.

Current research focuses on the methods of access control, that do not protect

information flow. However, the Take-Grant Protection model has rules to determine

information flow along with access control, thereby adding extra validity for it as a

security policy prototype.

19

III. Specifying the Take-Grant Model in PVS

3.1 Introduction

“Specification language, theorem provers, and models checkers are beginning to

be used routinely in industry [HR04].” This research specifies the Take-Grant Pro-

tection Model in the Prototype Verification System (PVS), a well-known verification

system [For03]. PVS uses a specification language to express mathematical theorems

and conjectures based on a system definition, which can be discharged using the in-

teractive theorem prover. The specification language has a rich and expressive logic,

and can formulate and examine problems in computer science; however, it does not

provide built-in notions of “state,” “state variable,” or “variable assignment” [For03].

These computational notions have to be modelled explicitly by encoding the seman-

tics of state machines and their transitional relations within the specifications. The

PVS theorem prover is interactive and based on a sequent calculus. One of the main

uses of PVS has been to explore synergies between expressive logic and proof automa-

tion [For03]. Because PVS is free of specific notions of computation, it is an ideal

platform to examine the Take-Grant Protection Model. Using PVS, the behavior of

Take-Grant is validated for a specified graph.

Two separate specifications are developed for each of the Take-Grant rules:

Take, Grant, Create, and Remove. Both use a digraph for model entities. Both spec-

ifications are subject only. The first specification is based on the Take-Grant theorem

directly. The second uses recursion and case statements to check the specified Take-

Grant graph for validity. Because the Take-Grant rules have common functions, code

for each rule was divided into parameterized theory modules and imported into the

rule theories. This chapter is composed of two model specification sections, with the

common imported theories and rule theories making up subsections under those. The

final two sections present the Can Share section and a section discussing contributions

made to the PVS digraph library.

20

3.2 Take-Grant Model One - No Error Checking

3.2.1 Common Imported Theories. In PVS, a specification consists of a

collection of theories, which may contain the type names and constants, axioms, def-

initions, and theorems associated with the specification [OSRSC99a]. Theories are

imported by theory name and not by file name. Different files having the same the-

ory name will cause errors. To avoid duplication, seven theories are developed that

can be imported to use with the Take-Grant rules depending on the specification.

Those theories are Definitions, Add Edge, Take Graph Init, Grant Graph Init, Re-

moveEdge, TG Lemma Init Take, and TG Lemma Init Grant.

Definitions Theory

This theory in List 3.1 contains all the declared types and constants, along with

a single axiom. This theory is used in all four rules.

List 3.1: Definitions Theory

%Part 1:

Definitions[Vertex:Type +]: THEORY

% Definition file: used with all the rules

BEGIN

%Part 2:

Importing digraphs@digraphs[Vertex]

%Part 3: declares TYPE of rights

Rights : TYPE = {read , write , take , grant}

%Part 4: declares a function given an edge returns the rights that...

belong to it

E_DB: TYPE = function[edgetype[Vertex]->set[Rights]]

%Part 5: Vertex ’s that can be used in the graph

X,Y,Z,A: Vertex

21

%Part 6: Variable that contains all rights

all_rights : Rights

%Part 7: AXIOM : which states the vertex aren ’t equal.

not_eq_ax : AXIOM X/=Y and Y/=Z and Z/=X and X/=A and A/=Y and ...

A/=Z

%Part 8:

END Definitions

Part 1 names the theory and declares a non-empty parameter type Vertex.

Because the Take-Grant rules are specified using a graph, each subject is of type

Vertex. BEGIN declares the beginning of the theory.

Part 2 imports the digraph theory and all diagraph functions instantiated for

the Vertex type. Digraph was developed by NASA Langley.

Part 3 declares an enumerated type called Rights with elements: read, write,

take, or grant.

Part 4 declares a type E DB which serves as an edge database. E DB is a

function which returns the set of rights for a given edge. For instance, if an edgetype

edge (X, Y), where X and Y are type Vertex, is initialized with read and take rights,

E DB(edge(X, Y)) would return read, take.

Part 5 declares all the four graph vertices as constants.

Part 6 declares all variable all rights to contain the four rights read, write, take,

grant.

Part 7 defines the axiom not eq ax used in the Take-Grant specifications. This

axiom states that all the vertices are different.

Part 8 ends the Definitions Theory with the keyword END and the theory

name.

22

Add Edge Theory

List 3.2, Add Edge, contains all the functions to add edges and vertices to the

graph, along with assigning rights to edges. Add Edge is used by the Take, Grant

and Create rules. In the following, only those aspects of the PVS specification not

previously discussed is covered.

List 3.2: Add Edge Theory

%Part1:

Add_Edge [Vertex:Type +]: THEORY BEGIN

%Part 2:

Importing Definitions[Vertex]

%Part 3: Adds a new edge to graph

AddEdge(g1: digraph , x: Vertex , y: Vertex):

digraph[Vertex] =

if vert(g1)(x) and vert(g1)(y)

then g1 with [edges := add((x,y),edges(g1))]

else g1

endif

%Part 4: Adds a right to the new edge

AddEdgeRight(db: E_DB , x: Vertex , y: Vertex , r: Rights):

E_DB = db with [(x,y):= add(r, emptyset[Rights])]

%Part 5: Adds all rights to the new edge

AddEdgeAllRights(db: E_DB , x: Vertex , y: Vertex):

E_DB = db with [(x,y):=

add(read ,add(write , add(take , add(grant , emptyset[Rights]))))]

%Part 6: For Adding Verts

AddVert(g1:digraph , x:Vertex):

digraph[Vertex] =

if vert(g1)(x)

23

then g1

else g1 with [vert := add(x,vert(g1))]

endif

%Part 7:

END Add_Edge

The AddEdge function in Part 3 adds a new edge to the digraph. The function

takes a digraph and two vertices. If both vertices exist in the graph, the new edge is

returned, otherwise the graph is returned unchanged.

In Part 4, AddEdgeRight takes an edge database, E DB, and two vertices. The

two vertices define the edge that rights are assigned to. E DB is returned with updates

to the specified edge.

The AddEdgeAllRights function in Part 5 takes an edge database E DB, two

vertices, and rights and returns E DB with the specified edge containing all rights.

In Part 6, the AddV ert function is used for the Create Rule. It takes a digraph

and a vertex. If the vertex exists, the digraph is returned with no changes, if it does

not exist then the vertex is added to the graph and the updated digraph is returned.

Graph Init Theory

This theory shown in List 3.3 initializes the digraph and the edge database for

the Take rule. It is used by the Take, Create, and Remove rules. Create and Remove

digraphs can be initialized with any configuration.

List 3.3: Graph Init Theory

%Part 1:

Graph_Init [Vertex:Type +]: THEORY

%Initializes the graph for the Take Rule

BEGIN

%Part 2:

Importing Definitions[Vertex]

24

%Part 3: Initialize graph

InitGraph : digraph[Vertex] =

(#vert := add(X, add(Y, singleton[Vertex](Z))),

edges := add((X,Y),add((Y,Z),emptyset[edgetype]))#)

%Part 4: initializes the edge rights

ADD(db: E_DB): E_DB = db

with [(X,Y):= add(take , emptyset[Rights])]

with [(Y,Z):= add(read ,emptyset[Rights])]

%Part 5:

END Graph_Init

Part 3 InitGraph initializes the digraph for the Take rule by first adding the

vertices X, Y and Z to the graph and the edges (X, Y) and (Y, Z).

In part 4, ADD initializes the right database for the graph declared in InitGraph.

To the edge (X, Y) the take right is added and to the edge (Y, Z) the read right is

added.

TG Lemma Init Take Theory

In List 3.4 the theory initializes the digraph and the edge database for the Take-

Grant Take lemma. It is used only by the Take rule. This theory is similar to the

Grant Graph Init theory, List 3.5, except the edge right is a take instead of a grant.

List 3.4: TG Lemma Init Take Theory

% Part 1:

TG_Lemma_Init_Take[Vertex:Type +]: THEORY

%Initializes the graph for the Take Take-Grant Lemma

BEGIN

%Part 2:

Importing Definitions[Vertex]

25

%InitGraphL and ADDL used for Take-Grant Lemma

%Part 3: Initialize graph

InitGraphL : digraph[Vertex] =

(#vert := add(X, add(Y, singleton[Vertex](Z))),

edges := add((Y,X) , add((Y,Z),emptyset[edgetype]))#)

%Part 4: initializes the edge rights

ADDL(db: E_DB): E_DB = db with [(Y,X):=

add(take , emptyset[Rights])] with [(Y,Z):= add(read ,emptyset[...

Rights])]

%Part 5:

END TG_Lemma_Init_Take

In part 3, InitGraphL, initializes the digraph for the Take-Grant Take lemma

and adds the vertices X, Y and Z to the graph. And the edges (Y, X) and (Y, Z).

ADDL, in part 4, initializes the right database for the graph declared in InitGraphL.

The take right is added to the edge (Y,X) and read is added to the edge (Y, Z).

Grant Graph Init Theory

This theory initializes the digraph and the edge database for the Grant rule in

List 3.5. It is used only by the Grant rule for this specification.

List 3.5: Grant Graph Init Theory

%Part 1:

Grant_Graph_Init [Vertex:Type +]: THEORY

%Initializes the graph for the Grant rule

BEGIN

%Part 2:

Importing Definitions[Vertex]

26

%Part 3: Initialize graph

InitGraph : digraph[Vertex] =

(#vert := add(X, add(Y, singleton[Vertex](Z))),

edges := add((Y,X),add((Y,Z),emptyset[edgetype]))#)

%Part 4: initializes the edge rights

ADD(db: E_DB): E_DB = db

with [(Y,X):= add(grant ,emptyset[Rights])]

with [(Y,Z):= add(read ,emptyset[Rights])]

%Part 5:

END Grant_Graph_Init

Part 3, InitGraph, initializes the digraph for the Take-Grant Take lemma. It adds

the vertices X, Y and Z to the graph and edges (Y, X) and (Y, Z).

ADD in Part 4 initializes the rights database for the graph declared in InitGraph.

To the edge (Y, X) grant is added and read is added to the edge (Y, Z).

TG Lemma Init Grant Theory

This theory initializes the digraph and the edge database in List 3.6 for the

Take-Grant Grant lemma. It is used only by the Grant rule in this specification.

List 3.6: TG Lemma Init Grant Theory

%Part 1:

TG_Lemma_Init_Grant [Vertex:Type +]: THEORY

%Initializes the graph for the Grant Take-Grant Lemma

BEGIN

%Part 2:

Importing Definitions[Vertex]

%InitGraphL and ADDL used for Take-Grant Lemma

27

%Part 3: Initialize graph

InitGraphL : digraph[Vertex] =

(#vert := add(X, add(Y, singleton[Vertex](Z))),

edges := add((X, Y) , add((Y,Z),emptyset[edgetype]))#)

%Part 4: initializes the edge rights

ADDL(db: E_DB): E_DB = db

with [(X,Y):= add(grant ,emptyset[Rights])]

with [(Y,Z):= add(read ,emptyset[Rights])]

%Part 5:

END TG_Lemma_Init_Grant

Part 3 InitGraphL initializes the digraph for the Take rule. It adds the vertices

X, Y and Z to the graph. And the edges (X, Y) and (Y, Z).

Part 4 ADDL initializes the right database for the graph declared in InitGraphL.

To the edge (X, Y) the grant right is added, and to the edge (Y, Z) the read right is

added.

Remove Edge Theory

This theory, List 3.7, contains all the functions to remove edges from the digraph,

along with the rights. It is used only by the Remove rule in this specification.

List 3.7: Remove Edge Theory

%Part 1:

RemoveEdge [Vertex : Type +]: THEORY

%Used by Remove Right

BEGIN

%Part 2:

Importing Definitions[Vertex]

28

%Part 3: Removes edges

RemoveEdge(g1: digraph , e:edgetype):

digraph[Vertex] = g1 with [edges := remove(e,edges(g1))]

%Part 4: Removes rights to an edge

RemoveEdgeRight(db: E_DB , e:edgetype , r: Rights):

E_DB = db with [(e‘1,e‘2):= remove(r, db(e))]

%Part 5:

END RemoveEdge

The RemoveEdge function, Part 3, takes a digraph and an edgetype, which is an edge

in the digraph, and returns the digraph after the edge is removed from the digraph’s

set of edges.

In part 4, RemoveEdgeRight, takes the edge database, an edgetype, and a right

and returns the edge database with the right removed from the edge.

3.2.2 Take Rule. The theory TakeRule defines theorems that establish

whether, given a digraph, X can take read right to Z or take(read, X, Z, graph) as

explained in List 3.8.

List 3.8: Take Rule

%Part 1: SUBJECT ONLY: Rule defined 3 node graph

TakeRule [Vertex : Type +]: THEORY

BEGIN

%Part 2:

Importing Definitions[Vertex]

Importing Graph_Init[Vertex]

Importing Add_Edge[Vertex]

Importing TG_Lemma_Init_Take[Vertex]

%Part 3: does edge (X,Y) have a take right

t_edge_in ?: bool = FORALL(db:E_DB):

edge?(InitGraph)(X,Y) and member(take ,(ADD(db)(X,Y)))

29

%Part 4: does edge(Y,Z) have a read right

r_edge_in ?: bool = FORALL(db:E_DB):

edge?(InitGraph)(Y,Z) and member(read ,(ADD(db)(Y,Z)))

%Part 5: does edge (Y,X) have a take right

t_edge_in_for_tg_L ?: bool = FORALL(db:E_DB):

edge?(InitGraphL)(Y,X) and member(take ,(ADDL(db)(Y,X)))

%Part 6: does edge(Y,Z) have a read right

r_edge_in_for_tg_L ?: bool = FORALL(db:E_DB):

edge?(InitGraphL)(Y,Z) and member(read ,(ADDL(db)(Y,Z)))

%Part 7: adds the new edge into the graph

edge_taken : bool = FORALL(db:E_DB):

edge?(AddEdge(InitGraph , X, Z))(X,Z) and

member(read ,(AddEdgeRight(ADD(db) , X, Z, read)(X,Z)))

%Part 8: adds the new edge into the graph for the T-G Lemma

edge_taken_L : bool = FORALL(db:E_DB):

edge?(AddEdge(InitGraphL , X, Z))(X,Z) and

member(read ,(AddEdgeRight(ADDL(db) , X, Z, read)(X,Z)))

%THEOREMS:

%Part 9: %Original Take-Grant rule(TAKE , X, Z, read)

Take_Edge : THEOREM

(t_edge_in ? and r_edge_in ?) iff edge_taken

%Part 10: %used for the Take-Grant Lemma (Take X, Z, read)

Take_Edge_L : THEOREM

(t_edge_in_for_tg_L ? and r_edge_in_for_tg_L ?) iff edge_taken_L

%Part 11:

END TakeRule

30

In Part3 t edge in? returns true or false depending on whether edge (X, Y) is

in the digraph and has the take right. edge?(InitGraph)(X, Y) calls InitGraph

which initializes and returns the graph which the edge? function from the digraphs

library uses to determine if edge (X, Y) is in the digraph. Function member(take,

(ADD(db)(X, Y))) calls ADD which initializes the rights the edges have, while

member determines if the take right is a member of the edge (X, Y).

The r edge in? function in Part 4 is the same as Part 3 except it checks for the

read right in edge (Y, Z).

The function t edge in for tg L? in Part 5 returns true or false depending on

if the edge (Y, X) is in the digraph and has the take right. edge?(InitGraphL)(Y,

X) calls InitGraphL declaration to initialize the graph then edge? from the di-

graphs library determines if the edge (Y, X) is in the digraph. The member(take,

(ADDL(db)(Y, X))) calls the ADDL declaration which initializes what rights the

edges have, then member determines if take belongs to the edge (Y, X).

Part 6 r edge in for tg L? is the same as Part 5 except it checks for the read

right in edge (Y, Z).

In edge taken, Part 7, returns true if the edge (X, Z) is in the digraph and that

edge has the read right. The function: edge?(AddEdge(InitGraph, X, Z))(X, Z)

initializes the digraph adds edge (X, Z). The function member(read,(AddEdgeRight(

ADD(db), X, Z, read)(X, Z))) initializes rights to the current edges in the digraph

then calls AddEdgeRight to add a right to the new edge. The member command

checks to make sure it was added.

The function edge taken L, Part 8, is the same as edge taken, Part 7, but uses

the lemma graph.

Part 9 and 10 are the theorems for the Take rule.

The first theorem, Part 9 Take Edge, proves the original Take-Grant Take rule.

The theorem says if and only if (for the digraph in question) there is a take edge from

X to Y and a read edge from Y to Z can the edge be taken. In this case edge (X, Y)’s

31

right is take and edge(Y, Z) has read. To simplify the theorem using the labels of the

boolean functions already defined it is written (t edge in? and r edge in?) iff

edge taken. Figure 3.1 shows how the theorem transforms the original graph.

Figure 3.1: Results of theorem Take Edge

The second theorem Take Edge L in Part 10 is used to prove the lemma to the

Take-Grant Take rule. The theorem says that if and only if, for the chosen digraph,

there is a take edge from Y to X and a read edge from Y to Z in the digraph can

the edge be taken. To simplify the theorem using the labels of the boolean functions

already defined is written as (t edge in for tg L? and r edge in for tg L?) iff

edge taken L and shown in Figure 3.2.

Figure 3.2: Results of theorem Take Edge L

32

3.2.3 Grant Rule. The GrantRule theory, List 3.9, is true if in the digraph

specified X is granted read to Z. In this example, Y grants read to Z to X.

List 3.9: Grant Rule

%Part 1:

GrantRule [Vertex:Type +]: THEORY

%SUBJECT ONLY: Rule defined 3 node graph

BEGIN

%Part 2:

Importing Definitions[Vertex]

Importing Grant_Graph_Init[Vertex]

Importing Add_Edge[Vertex]

Importing TG_Lemma_Init_Grant[Vertex]

%Part 3: does edge (Y,X) have a grant right

g_edge_in ?: bool = FORALL(db:E_DB):

edge?(InitGraph)(Y,X) and member(grant ,(ADD(db)(Y,X)))

%Part 4: does edge(Y,Z) have a read right

r_edge_in ?: bool = FORALL(db:E_DB):

edge?(InitGraph)(Y,Z) and member(read ,(ADD(db)(Y,Z)))

%Part 5: does edge (X,Y) have a grant right

g_edge_in_for_tg_L : bool = FORALL(db:E_DB):

edge?(InitGraphL)(X,Y) and member(grant ,(ADDL(db)(X,Y)))

%Part 6: does edge(Y,Z) have a read right

r_edge_in_for_tg_L : bool = FORALL(db:E_DB):

edge?(InitGraphL)(Y,Z) and member(read ,(ADDL(db)(Y,Z)))

33

%Part 7: adds the new edge into the graph

edge_granted : bool = FORALL(db:E_DB):

edge?(AddEdge(InitGraph , X, Z))(X,Z) and

member(read ,(AddEdgeRight(ADD(db) , X, Z, read)(X,Z)))

%Part 8: adds the new edge into the graph

edge_granted_L : bool = FORALL(db:E_DB):

edge?(AddEdge(InitGraph , X, Z))(X,Z) and

member(read ,(AddEdgeRight(ADDL(db) , X, Z, read)(X,Z)))

%THEOREMS:

%Part 9: Original Take-Grant rule(Grant X, Z, read)

Grant_Edge : THEOREM

(g_edge_in ? and r_edge_in ?) iff edge_granted

%Part 10: Used in the Take-Grant Lemma (Grant X, Z, read)

Grant_Edge_L : THEOREM

(g_edge_in_for_tg_L and r_edge_in_for_tg_L)

iff edge_granted_L

%Part 11:

END GrantRule

The function g edge in? in Part 3 returns true only if the edge (Y,X) is in

the digraph and has the grant right. edge?(InitGraph)(Y, X) calls InitGraph to

initialize the graph, then uses edge? function from the digraphs library determines if

the edge (Y, X) is in the digraph. The member(grant, (ADD(db)(Y, X))) calls

the ADD declaration which initializes what rights the edges have, then member from

the sets library determine if grant belongs to the edge (Y, X).

Part 4 r edge in? is the same as Part 3 except it checks for the read right in

edge (Y, Z).

In Part 5, g edge in for tg L?, returns true or false depending on whether the

edge (X, Y) is in the digraph and has the grant right. edge?(InitGraphL)(X, Y)

34

calls InitGraphL which initializes and returns the graph which the edge? function

from the digraphs library uses to determine if edge (X, Y) is in the digraph. Function

member(grant, (ADDL(db)(X, Y))) calls ADDL which initializes the rights

edges have, then the member function determines if the grant right is a member of

the edge (X, Y).

The function r edge in for tg L? in Part 6 is the same as Part 5 except it checks

for the read right in edge (Y,Z).

The edge granted function in Part 7 is true when the edge (X, Z) is in the

digraph and has the read right. The function edge?(AddEdge(InitGraph, X,

Z))(X, Z) initializes the digraph then adds edge (X, Z) to it. The function mem-

ber(read,(AddEdgeRight(ADD(db), X, Z, read)(X, Z))) initializes the rights

to the current edges in the digraph and calls AddEdgeRight to add a right to the

new edge. The member command checks to make sure it was added.

In Part 8 edge granted L is the same as edge granted but uses the lemma graph.

Part 9 and 10 are the theorems for the Grant rule.

Figure 3.3: Results of theorem Grant Edge

The first theorem in Part 9, Grant Edge, proves the original Take-Grant Grant

rule. The theorem says that if and only if (for the current digraph) there is a grant

edge and a read edge from X to Z in the digraph can the edge be granted. To

35

simplify the theorem using the labels of the boolean functions already defined it is

written (g edge in? and r edge in?) iff edge granted. Figure 3.3 shows how

the theorem transforms the original graph.

The second theorem Grant Edge L in Part 10 proves a lemma for the Take-

Grant Grant rule. The theorem says that if and only if (for the initialized di-

graph) there is a grant edge and a read edge from X to Z in the digraph can the

edge be granted. To simplify the theorem using the labels of the boolean func-

tions already defined it is written (g edge in for tg L and r edge in for tg L)

iff edge granted L and is shown in Figure 3.4

Figure 3.4: Results of theorem Grant Edge L

3.2.4 Create Rule. The CreateRule theory, List 3.10 returns true or false if

the vertex specified X can create vertex A and give the new edge (X, A) all the rights.

Written as create(allrights, X, A, graph), where all rights are read, write, take, and

grant.

List 3.10: Create Rule

%Part 1: %SUBJECT ONLY: Rule defined

CreateRule [Vertex : TYPE +]: THEORY

BEGIN

36

%Part 2:

Importing Definitions[Vertex]

Importing Graph_Init[Vertex]

Importing Add_Edge[Vertex]

%Part 3: checks to see if vert exists that is doing the creation

v_exists ?: bool = member(X, vert(InitGraph))

%Part 4: checks to see if vert to be created exists

new_v_not_exists ?: bool = FORALL(A:Vertex|A/=X and A/=Y and A/=Z):

not member(A, vert(InitGraph))

%Part 5: new vert is created

v_created : bool = FORALL(A:Vertex|A/=X and A/=Y and A/=Z):

member(A, vert(AddVert(InitGraph , A)))

%Part 6: new edge is created

e_created : bool = FORALL(A:Vertex|A/=X and A/=Y and A/=Z):

edge?(AddEdge(AddVert(InitGraph , A),X, A))(X,A)

%Part 7: new edge has allrights added to it

e_r_created:bool = FORALL(db:E_DB):

member(all_rights ,(AddEdgeAllRights(ADD(db) , X, A)(X,A)))

%Part 8: (Create ,X,A, allrights) - allrights =(r,w,t,g)

Create_Vert_Right : THEOREM

((v_exists ? and new_v_not_exists ?) iff v_created)

implies (e_created and e_r_created)

%Part 9: (Create ,X,A, allrights) - allrights =(r,w,t,g)

Created : THEOREM

(v_exists ? and new_v_not_exists ?) implies

(v_created and e_created and e_r_created)

%Part 10:

END CreateRule

37

The function v exists? in Part 3 returns true or false based on whether the ver-

tex doing the creating exists in the digraph. Function member(X, vert(InitGraph))

checks that X is in the graph.

In Part 4, new v not exists? returns true or false depending on if the vertex

to be created is already a member of the digraph. This function states that all

vertices are not equal with a FORALL declaration: FORALL(A:Vertex—A/=X

and A/=Y and A/=Z). The digraph is initialized and through the negation of the

member function A it is determined A is not part of the digraph. This function is

not member(A, vert(InitGraph)).

Part 5 v created returns true if the new vertex was successfully added to the

digraph. In function member(A, vert(AddVert(InitGraph, A))) the graph is

initialized, then the AddV ert function is called with that digraph and the vertex to

add A. Once the vertex is created, the member function checks to see if the vertex

was added.

The e created function in Part 6 is true if the new edge was successfully created

from the creating vertex to the new vertex. The graph is initialized with InitGraph

in the function edge?(AddEdge(AddVert(InitGraph, A),X, A))(X, A) then

AddV ert and AddEdge is called. Finally edge? function confirms that the edge was

added to the digraph.

In Part 7 e r created returns true or false depending on if the new edge (X, A)

contains all the rights: read, write, take, and grant. The function

member(all rights,(AddEdgeAllRights(ADD(db), X, A)(X, A))) first initial-

izes the edge database, then AddEdgeAllRights is called with the new edge to add

rights to. Finally member checks to make sure the correct rights were added to (X,

A)’s edge database.

Part 8 and 9 are the theorems for the Create rule. Even though the two theorems

are different, the change to the graph produced by each theorem is fundamentally the

same and shown in Figure

38

Create V ert Right in Part 8 is the first theorem to prove the Take-Grant Create

rule. It states that if and only if the creating vertex exists and the vertex to be

created does not then the vertex can be added to the graph, which implies that the

edge was created and all the rights were added to the new edge database. To simplify

the theorem, the boolean functions already defined were used: ((v exists? and

new v not exists?) iff v created) implies (e created and e r created).

3.5.

Figure 3.5: Create Theorem

Part 9 is the Created theorem, which uses a different approach to prove the

Take-Grant Create rule. It states that if the creation vertex exists and the vertex

to be created does not then the vertex can be added to the graph, the new edge

was created connecting the two vertices, and all the rights were added to the new

edge edge database. The theorem is written (v exists? and new v not exists?)

implies (v created and e created and e r created), since the boolean functions

were already defined.

3.2.5 Remove Rule. The RemoveRule theory in List 3.11 is true for a

specified digraph if the read right for edge (Y, Z) is removed. If there are no more

rights for that edge, the edge itself is removed. The command is written remove(Y,

Z, read).

39

List 3.11: Remove Rule

%Part 1:

RemoveRule [Vertex : TYPE +] : THEORY

%SUBJECT ONLY: Rule defined

BEGIN

%Part 2:

Importing Definitions[Vertex]

Importing Graph_Init[Vertex]

Importing RemoveEdge[Vertex]

%Part 3: does right exist to be removed

r_exists ?: bool = FORALL(db:E_DB):

member(read ,(ADD(db)(Y,Z)))

%Part 4: does the edge exist to remove right

e_exists ?: bool = edge?(InitGraph)(Y,Z)

%Part 5: right is removed

r_removed : bool = FORALL(db:E_DB):

not member(read ,(RemoveEdgeRight(ADD(db) , (Y,Z) , read)(Y,Z)))

%Part 6: edge is removed if it has no rights

e_removed : bool = FORALL(db:E_DB):

empty ?((RemoveEdgeRight(ADD(db) , (Y,Z) , read)(Y,Z))) iff

(not edge?(RemoveEdge(InitGraph ,(Y,Z)))(Y,Z))

%THEOREM:

%Part 7: Rule (Remove , Y,Z,read)

Remove_Right : THEOREM

(e_exists ? and r_exists ?) implies (r_removed and e_removed)

%Part 8:

END RemoveRule

40

Part 2 states the theories that Remove Rule uses is: Definitions, Take Graph Init,

and RemoveEdge. Although any graph initialization scheme could be used, Re-

moveRule uses Take Graph Init.

In Part 3, the r exists function returns true or false depending on the existence

of the right to be removed in the edge database. member(read,(ADD(db)(Y,

Z))) initially calls ADD to add all the rights to all the edges in the digraph, then

using the member function makes sure that read is a right on the (Y, Z) edge.

The function in Part 4, e exists, returns true or false based on whether the

edge the right belongs to exists in the graph. edge?(InitGraph)(Y, Z) initializes

the digraph then using the edge? function checks to see if (Y, Z) exists as an edge in

the digraph.

Part 5 r removed returns true if the edge to be removed was successfully re-

moved. r removed uses not member(read, (RemoveEdgeRight(ADD(db), (Y,

Z), read)(Y, Z))) which first calls ADD to add all the rights to the edges in the

digraph. Then it calls RemoveEdgeRight which removes the right in question. Using

not in front of the member function causes it to return true if the edge is no longer

a member in (Y, Z) right set.

The e removed function, Part 6, returns true or false depending on whether the

edge is removed if and only if it has no rights. empty?((RemoveEdgeRight(ADD(db),

(Y, Z), read)(Y, Z))) first calls ADD to add all the rights to the edges. Then calls

RemoveEdgeRight removes the right. Using the empty? function the edge right set

checks to see if its empty if and only if that is true is the second part of the spec-

ification considered. (not edge?(RemoveEdge(InitGraph,(Y, Z)))(Y, Z)) will

initialize the graph then call RemoveEdge to delete the required edge (Y,Z) and then

check by negating the edge? function to make sure it is no longer a member in the

graph.

The theorem in Part 7 proves the Remove rule: Remove Right. The theorem

says that if the right to be removed exists and the edge it exists on is in the digraph,

41

this implies the right can be removed and the edge as well if the edge contains no

other rights. The theorem is simplified by using the boolean functions already defined

and looks like (e exists? and r exists?) implies (r removed and e removed).

Figure 3.6 shows how the theorem transforms the graph.

Figure 3.6: Remove Theorem

3.3 Take-Grant Model Two - Error Checking

Model two allows an arbitrary digraph to be specified. Recursion is used to

move through a case statement which allows more error checking.

3.3.1 Common Imported Theories. The theories that are imported for the

rules are listed here. Only if the theories changed between models are they explained

below. The Take Graph Init theory initializes the digraph and the edge database for

both the Take, Create, and Remove rules. The only difference is which definition

file is imported: tgDefinitions is used for the Take rule, while cDefinitions is used

by Create and rDefinitions is imported for the Remove rule. Grant Graph Init along

with Add Edge are exactly the same theories used for Model 1.

tgDefinitions Theory

The tgDefinitions theory contains all the definitions used for the Take and Grant

rule in List 3.12. In the following, only those aspects of the PVS specification that

are new are discussed.

42

List 3.12: tgDefinitions Theory

%Part 1:

tgDefinitions [Vertex : TYPE +]: THEORY

BEGIN

%Part 2:

Importing digraphs@digraphs[Vertex]

Importing digraphs@digraph_ops[Vertex]

Importing digraphs@digraph_deg[Vertex]

%Part 3: % declares TYPE of right

Rights : TYPE = {read , write , take , grant}

%Part 4: declares a function : given an edge returns the rights ...

that belong to it

E_DB: TYPE = function[edgetype[Vertex]->set[Rights]]

%Part 5: Vertices that can be used in the graph

X,Y,Z,A: Vertex

%Part 6:

nil:Vertex

%Part 7: Program counter Type

PCT: TYPE = {L0 ,L1 ,L2 ,L3 ,L4 ,L5 ,L6 ,L7 ,LTRUE ,LFALSE ,LEND}

%Part 8: attributes for each vertex

node : TYPE = [#

dest: Vertex , % destination

source : Vertex , % source edge starts from

e1: edgetype , % an outgoing edge

ie: finite_set[edgetype], % all incoming edges

oe: finite_set[edgetype] % all outgoing edges

#]

43

%Part 9: node database function given a vertex returns its ...

attributes

n_db: TYPE = function[Vertex -> node]

%Part 10: labelled graph attributes

L_Graph : TYPE = [#

g1: digraph[Vertex],

db: E_DB ,

PC: PCT ,

Node: n_db ,

taken: bool ,

addright : Rights ,

granted:bool

#]

%Part 11:

null: edgetype = (nil ,nil)

%Part 12: AXIOM : which states the vertices aren ’t equal

not_eq_ax : axiom X/=Y and Y/=Z and Z/=X

%Part 13:

END tgDefinitions

Part 2 imports the digraph, digraph ops, and digraph deg theories, instantiated for

the Vertex type. All of those theories were developed by NASA Langley.

Part 6 declares a nil vertex, which is used to mark dead-ends in the functions

In Part 7 the values used for the program counter are declared. These values

move the recursion through the case statement.

Part 8 declares a node type, which contains all the attributes for the node. The

attributes that each node has are: dest which contains the destination node or the

node that is used to progress down the digraph, source, which is either the same as

the node or is the node that was previously used in the state, ie which is a set of

44

all incoming edges to the vertex, and oe, which is a set of all outgoing edges to the

vertex.

The node database, Part 9, declares as a function which given a vertex returns

the node attributes.

Part 10 is a type of L Graph (labelled graph) which holds all the variables for the

current state. This is the main type. The variables that L Graph has are: g1, which

is the changed digraph; db, which is the edge database; PC, which is the program

counter; Node, which contains the node database; taken, which is used for the Take

rule and will be true if the edge can be taken; addright, an addright variable; and

granted, which is used for the Grant rule and will be true if the edge can be granted.

Part 11 declares a null edgetype which is designated to be (nil,nil) an empty

edgetype

cDefinitions Theory

The cDefinitions theory in List 3.13 contains all the definitions used for the

Create rule.

List 3.13: cDefinitions Theory

%Part 1:

cDefinitions [Vertex : Type +] : THEORY

BEGIN

%Part 2:

Importing digraphs@digraphs[Vertex]

Importing digraphs@digraph_ops[Vertex]

Importing digraphs@digraph_deg[Vertex]

%Part 3: declares TYPE of right works

Rights : TYPE = {read , write , take , grant}

45

%Part 4: declares a function given an edge returns the rights that...

belong to it

E_DB: TYPE = function[edgetype[Vertex]->set[Rights]]

%Part 5: Vertex ’s that can be used in the graph

X,Y,Z,A,B: Vertex

%Part 6:

nil: Vertex

%Part 7:

PCT: TYPE = {L0 ,L1 , L2 , L3 , L4 ,L5 ,LTRUE ,LFALSE ,LEND}

%Part 8:

L_Graph : TYPE = [#

g1: digraph[Vertex],

db: E_DB ,

PC: PCT ,

created : bool

#]

%Part 9:

null: edgetype = (nil ,nil)

%Part 10: AXIOM : which states the vertices aren ’t equal

not_eq_ax : axiom X/=Y and Y/=Z and Z/=X and X/=A and A/=Y and A/=Z

%Part 11:

END cDefinitions

In Part 7, the PC values are not the same as tgDefinitions, so that theory

cannot be used, because there are more values than case statements you get a Type

Correctness Condition (TCC) is generated when proving.

46

In Part 8, the only different between tgDefinitions is the variable created which

will be true if a new vert/edge can be created.

rDefinitions Theory

In List 3.14 the rDefinitions theory defines all the definitions used for the Remove

rule.

List 3.14: rDefinitions Theory

%Part 1:

rDefinitions [Vertex : Type +]: THEORY

BEGIN

%Part 2:

Importing digraphs@digraphs[Vertex]

Importing digraphs@digraph_ops[Vertex]

Importing digraphs@digraph_deg[Vertex]

%Part 3: declares TYPE of right works

Rights : TYPE = {read , write , take , grant}

%Part 4:

E_DB: TYPE = function[edgetype[Vertex]->set[Rights]]

%Part 5:

X,Y,Z,A,B: Vertex

%Part 6:

nil: Vertex

%Part 7:

PCT: TYPE = {L0,L1,L2,L3,L4,LTRUE ,LFALSE ,LEND}

47

%Part 8:

L_Graph : TYPE = [#

g1: digraph[Vertex],

db: E_DB ,

PC: PCT ,

removed : bool

#]

%Part 9: null: edgetype = (nil ,nil)

%Part 10:

not_eq_ax : axiom X/=Y and Y/=Z and Z/=X

%Part 11:

END rDefinitions

Part 7 declares the values used for the program counter. These values move the

recursion through the case statement.

Part 8 declares a type L Graph which the only difference from cDefinitions is

that removed is used instead of create. Removed is true if the right to be removed

was successfully removed.

Node ops Theory

The Node ops theory, List 3.15, defines all the operations on nodes. This theory

is used only for the Take and Grant rules.

List 3.15: Node ops Theory

%Part 1:

Node_ops [Vertex : TYPE +]: THEORY

BEGIN

%Part 2:

Importing tgDefinitions[Vertex]

48

%Part 3:

set_edge(x:Vertex ,a:edgetype , c:L_Graph ,oes: finite_set[edgetype],

ies: finite_set[edgetype]): L_Graph = c

with [‘Node(x)‘e1:=a, ‘Node(x)‘dest := a‘2,‘Node(x)‘source :=x, ...

‘Node(x)‘oe:=oes , ‘Node(x)‘ie:=ies]

%Part 4: %sets node attributes

get_edge(c: L_Graph , x: Vertex): L_Graph = if x=X

then set_edge(x, (X,Y) , c,outgoing_edges(x, c‘g1),...

incoming_edges(x, c‘g1))

else (if x=Y then set_edge(x,(Y,Z),c,outgoing_edges(x,

c‘g1),incoming_edges(x, c‘g1))

else set_edge(x,(Z,Z),c,outgoing_edges(x, c‘g1),...

incoming_edges(x, c‘g1))

endif) endif

%Part 5: %update node dest and source

Node_update(Node: n_db , x: Vertex , e1: Vertex , e2: Vertex):n_db =

Node with [(x)‘source := e1 ,(x)‘dest := e2]

%Part 6: %for each vertex the node attributes are set

set_Node_e1(c: L_Graph , v: finite_set[Vertex]): recursive L_Graph=

if empty ?(v)then c

else let a = choose(v) in

set_Node_e1(get_edge(c, a) , remove(a,v))

endif measure card(v)

%Part 7:

END Node_ops

In Part 3, the set edge function sets the nodes e1, dest, source, oe and ie

variables. The e1 variable contains an edge for the node, source is set to itself, dest

49

is set to the edges second value, oe contains the outgoing edges and ie contains the

nodes incoming edges.

The get edge function in Part 4 calls the set edge function. Different edges are

passed to set edge depending on which vertex was used to call get edge.

Part 5 the Node update function updates the source and destination for the

node that calls it.

In Part 6 the set Node e1 function is a recursive call to go through all the

vertices in the graph and set their node attributes.

RemoveEdge Theory

The Model 2 RemoveEdge theory, List 3.16, defines all remove edge and right

functions. it is basically the same as the RemoveEdge specification for Model 1, List

3.7, except for the Remove Edge function.

List 3.16: RemoveEdge Theory

%Part 1:

RemoveEdge [Vertex : Type +]: THEORY

BEGIN

%Part 2:

Importing rDefinitions[Vertex]

%Part 3: For REMOVE - removes edges

RemoveEdge(g1: digraph , e:edgetype): digraph[Vertex] = g1 with

[edges := remove(e,edges(g1))]

%Part 4: Removes rights to an edge

RemoveEdgeRight(db: E_DB , e:edgetype , r: Rights):E_DB = db with

[(e‘1,e‘2) := remove(r, db(e))]

50

%Part 5: Main function call to delete edge

Remove_Edge(c:L_Graph ,e:edgetype):L_Graph =

if edge?(c‘g1)(e)

then c with [g1:= RemoveEdge ((c‘g1),e)]

else c

endif

%Part 6:

END RemoveEdge

The Remove Edge function in Part 5 is the function that decides if the edge

needs to be removed. The functions parameters are in L Graph and an edgetype

variable. If the edge exists in the current digraph, it is removed, else the digraph is

returned with no change.

3.3.2 Take Rule. The take rule theory in List 3.17 returns true or false if in

the digraph specified, X can take read rights to Z from Y.

List 3.17: Take Rule

%Part 1:

take_rule [Vertex : TYPE +]: THEORY

%SUBJECT ONLY

%Is used strictly for the 3 node query , which is how the rule is ...

defined.

BEGIN

%Part 2:

Importing tgDefinitions[Vertex]

Importing Graph_Init[Vertex]

Importing Node_ops[Vertex]

Importing Add_Edge[Vertex]

51

%Part 3: %loop actions

%Part 3.1:

L0(c: L_Graph , x:Vertex , y:Vertex): L_Graph = c with

[g1:=InitGraph , db:= ADD(c‘db)]

%Part 3.2:

L3(c: L_Graph , x: Vertex , y:Vertex):L_Graph =

set_Node_e1(c,vert(c‘g1))

%Part 3.3:

%see if the current edge has take for a right if it does update ...

the destination and source

Take_out_edge ?(c: L_Graph , x: Vertex , n: n_db): L_Graph =

if member(take , c‘db(c‘Node(x)‘e1))

then c with [Node := Node_update(c‘Node , x, c‘Node(x)‘e1 ‘1, c‘...

Node(x)‘e1 ‘2)]

else c endif

%Part 3.4

L5(c: L_Graph , x: Vertex , r:Rights):L_Graph = c with

[Node := Node_update(c‘Node , x, c‘Node(x)‘e1 ‘1, c‘Node(x)‘e1 ‘2),

addright := r]

%Part 3.5 %adds new edge to graph , adds new edge right to ...

edge_db

L6(c: L_Graph , x: Vertex , y: Vertex , r: Rights):L_Graph = c with [

g1:= AddEdge(c‘g1 , x, y),

db:= AddEdgeRight(c‘db , x, y, r)]

%Part 3.6

LTRUE(c:L_Graph): L_Graph = c with [taken := true]

%Part 3.7

LFALSE(c:L_Graph): L_Graph = c with [taken := false]

52

%Part 4: % Loop

sw(c: L_Graph , r: Rights , x: Vertex , y: Vertex): L_Graph =

Cases c‘PC of

%Part 4.1: %initializes graph and E_DB

L0:L0(c,x,y) with [PC:=L1],

%Part 4.2: % checks if first node is in graph else quit

L1: c with [PC:= if not member(x, vert(c‘g1)) then LFALSE

% checks if second node is in graph else quit

else (if not member(y, vert(c‘g1)) then LFALSE

% checks if needed edge exists else need to obtain ...

edge

else(if not member ((x,y),outgoing_edges(x, c‘g1)) then L2

% checks if needed edge has right needed else go ...

obtain edge with correct right

else (if member(r,(c‘db(x,y))) then LFALSE else L2 endif)

endif) endif) endif],

%Part 4.3: % checks if there are at least 3 verts in graph else ...

quit

L2: c with [PC:= if (card[Vertex](vert(c‘g1))=3)

then L3

else LFALSE endif],

%Part 4.4: % initializes the vertices attributes

L3: L3(c, x, y) with [PC:= L4],

%Part 4.5:

L4: Take_out_edge ?(c, x, c‘Node) with [PC:=L5],

%Part 4.6: % updates X’s destination node ’s destination , sets the ...

right to add to edge

L5: L5(c, Y, r) with [PC:=L6],

53

%Part 4.7: % adds edge to graph and adds right edge to database

L6: L6(c, x, y, r) with [PC:=L7],

%Part 4.8: % checks to see if right exists for added edge

L7: c with [PC:= if member(r,(c‘db(x,y))) then LTRUE else ...

LFALSE endif],

%Part 4.9:

LTRUE: LTRUE(c) with [PC:= LEND],

%Part 4.10:

LFALSE:LFALSE(c) with [PC:= LEND],

%Part 4.11:

LEND: c

Endcases

%Part 5:

takerule(num: nat , r: Rights , x: Vertex , y: Vertex , initial:

L_Graph): Recursive L_Graph = if num =0 then

initial with [PC:=L0]

else

sw(takerule(num-1 ,r,x,y,initial),r,x,y)

endif measure num

%Part 6:

Take_Rule_Taken : THEOREM FORALL (initial : L_Graph): FORALL(num:

nat | takerule(num , read , X, Z, initial)‘PC=LEND): takerule(num ,

read , X, Z, initial)‘taken=true

%Part 7:

END take_rule

54

Part 2 states that this theory is going to use the tgDefinitions, Graph Init,

Node ops, and Add Edge theories.

Part 3 are the loop actions taken when for the PC functions are taken

Part 3.1 L0 initializes the graph g1 and the rights for the edge db.

Part 3.2 L3 calls set Node e1 function which will set the node attributes for

each vertex in the graph.

Part 3.3 Take out edge verifies if the take right is in the current selected edge,

if it is, then the source and destination node are updated for that vertex else the

L Graph is returned unchanged.

Part 3.4 L5 updates X’s destination node’s (Y) destination and source.

Part 3.5 L6 adds the new edge to the graph and the edge with right to the edge

database.

Part 3.6 LTRUE returns L Graph with taken set to true.

Part 3.7 LFALSE returns L Graph with taken set to false.

Part 4 is the recursive loop built into a case statement. The recursion moves

as the PC is changed through each iteration. The case statement is called sw which

takes a L Graph, and two vertices, and a right. The vertex that is going to take the

given right from the second vertex.

Part 4.1 L0 calls loop action L0 and sets PC to L1.

Part 4.2 L1 checks to make sure both vertices are in the digraph and that the

edge does not exist with the correct right. If it does exist then LFALSE if the edge

does not exist with correct right then L2.

Part 4.3 L2 checks to see if there are three vertices in the graph. If there are 3

vertices then the PC is set to L3 otherwise it is set to LFALSE.

Part 4.4 L3 calls the loop action L3 to initialize the vertices attributes.

Part 4.5 L4 loop action Take out edge is called and PC=L5.

55

Part 4.6 L5 updates the node’s destination destination node, in this case Y and

then goes to L6.

Part 4.7 L6 adds the new edge to the graph then calls L7.

Part 4.8 L7 checks to make sure the edge created has the required right. If it

does, it goes to LTRUE else LFALSE.

The LTRUE PC counter in Part 4.9 goes to LEND. This indicates that taken

was indeed successful.

Part 4.10, the PC counter LFALSE goes to LEND. This indicates that taken

failed.

The PC counter LEND, Part 4.11, signals the end of the program counter and

returns a L Graph.

In Part 5, takerule is the recursive call to go through the program counter case

statements found in the sw function. If num = zero then the initial graph starts

with the PC = L0 else the case statement sw is called with takerule as one of the

parameters, which invokes the recursion.

Take Rule Taken in Part 6 is the theorem for Take, which says that for all

the initial L Graph, for all num (arbitrary number used for recursion), when the

PC=LEND taken = true.

3.3.3 Grant Rule. The grant rule theory is designed to return true or false

in List 3.18 if for the digraph specified Y grants read rights to Z to X.

List 3.18: Grant Rule

%Part 1: SUBJECT ONLY. is used for rule definition : 3 node query

grant_rule [Vertex : TYPE +] : THEORY

BEGIN

%Part 2:

Importing tgDefinitions[Vertex]

Importing Grant_Graph_Init[Vertex]

56

Importing Node_ops[Vertex]

Importing Add_Edge[Vertex]

%Part 3: %loop actions

%Part 3.1:

L0(c: L_Graph , x:Vertex , y:Vertex): L_Graph = c with

[g1:=InitGraph , db:= ADD(c‘db)]

%Part 3.2:

L3(c: L_Graph , x: Vertex , y:Vertex):L_Graph =

set_Node_e1(c, vert(c‘g1))

%Part 3.3:

%see if the current edge has grant for a right if it does update ...

the dest and source

Grant_in_edge ?(c: L_Graph , x: Vertex , n: n_db): L_Graph =

if member(take , c‘db(c‘Node(x)‘e1))

then c with [Node := Node_update(c‘Node , x, c‘Node(x)‘e1 ‘1, c‘...

Node(x)‘e1 ‘2)]

else c endif

%Part 3.4:

L5(c: L_Graph , x: Vertex , r:Rights):L_Graph = c with [Node:=

Node_update(c‘Node , x, c‘Node(x)‘e1 ‘1, c‘Node(x)‘e1 ‘2) , addright :=

r]

%Part 3.5: % adds new edge to graph , adds new edge right to ...

right_db

L6(c: L_Graph , x: Vertex , y: Vertex , r: Rights):L_Graph = c with

[g1:= AddEdge(c‘g1 , x, y),

db:= AddEdgeRight(c‘db , x, y, r)]

%Part 3.6:

LTRUE(c:L_Graph): L_Graph = c with [granted := true]

57

%Part 3.7:

LFALSE(c:L_Graph): L_Graph = c with [granted := false]

%Part 4: Loop

sw(c: L_Graph , r: Rights , x: Vertex , y: Vertex): L_Graph =

Cases c‘PC of

%Part 4.1: %initializes graph and E_DB

L0:L0(c,x,y) with [PC:=L1],

%Part 4.2: % checks if first node is in graph else quit

L1: c with [PC:= if not member(x, vert(c‘g1)) then LFALSE

% checks if second node is in graph else quit

else (if not member(y, vert(c‘g1)) then LFALSE

% checks if needed edge exists else obtain new edge

else(if not member ((x,y),outgoing_edges(x, c‘g1)) then L2

% checks if correct right exists on edge

else (if member(r,(c‘db(x,y))) then LFALSE else L2 endif)

endif) endif) endif],

%Part 4.3: %checks there are at least 3 verts in graph else quit

L2: c with [PC:= if (card[Vertex](vert(c‘g1))=3)

then L3

else LFALSE endif],

%Part 4.4:

L3: L3(c, x, y) with [PC:= L4],

%Part 4.5:

L4: Grant_in_edge ?(c, x, c‘Node) with [PC:=L5],

%Part 4.6: updates X’s dest node ’s dest , sets the right to add to ...

edge

L5: L5(c, Y, r) with [PC:=L6],

58

%Part 4.7: % adds edge to graph and adds right edge to database

L6: L6(c, x, y, r) with [PC:=L7],

%Part 4.8:

L7: c with [PC:= if member(r,(c‘db(x,y))) then LTRUE else ...

LFALSE endif],

%Part 4.9:

LTRUE : LTRUE(c) with [PC:= LEND],

%Part 4.10:

LFALSE:LFALSE(c) with [PC:= LEND],

%Part 4.11:

LEND: c

Endcases

%Part 5:

grantrule(num: nat , r: Rights , x: Vertex , y: Vertex , initial:

L_Graph): Recursive L_Graph = if num =0 then

initial with [PC:=L0]

else

sw(grantrule(num-1 ,r,x,y,initial),r,x,y)

endif measure num

%Part 6:

Grant_Rule_Granted : THEOREM FORALL (initial : L_Graph): FORALL(num:

nat | grantrule(num , read , X, Z, initial)‘PC=LEND): grantrule(num ,

read , X, Z, initial)‘granted=true

%Part 7:

END grant_rule

59

Part 2 states that this theory uses the tgDefinitions, Grant Graph Init, Node ops,

and Add Edge theories.

Part 3 are the loop actions taken for the PC functions.

Part 3.1 L0 initializes the graph g1 and the rights for the edge db.

Part 3.2 L3 calls set Node e1 function which will set the node attributes for

each vertex in the graph.

Part 3.3 Grant in edge verifies the grant right is in the current selected edge.

If it is, then the source and destination nodes are updated for that vertex. Otherwise

the L Graph is returned unchanged.

Part 3.4 L5 updates the X’s destination node’s (Y) destination and source.

Part 3.5 L6 adds the new edge to the graph and the edge with right to the edge

database.

Part 3.6 LTRUE returns L Graph with taken set to true

Part 3.7 LFALSE returns L Graph with taken set to false

Part 4 The recursive loop is built into a case statement, the recursion moves

as the PC is changed through each iteration. The case statement is called sw which

takes a L Graph, and two vertices, and a right. The vertex that is going to take the

given right from the second vertex.

Part 4.1 L0 calls loop action L0 and sets PC to L1

Part 4.2 L1 checks to make sure both vertices are in the digraph and that the

edge does not exist with the correct right. If it does exist then PC is set to LFALSE

otherwise it is set with L2.

Part 4.3 L2 checks if there are three vertices in the graph, if there are then go

to L3 else quit by setting PC to LFALSE.

Part 4.4 L3 calls the loop action L3 to initialize the vertices attributes.

Part 4.5 L4 loop action Grant in edge is called and PC=L5.

60

Part 4.6 L5 updates the node’s destination destination node, in this case Y and

then goes to L6.

Part 4.7 L6 adds the new edge to the graph then calls L7.

Part 4.8 L7 checks to make sure the edge created has the required right. If it

does, it goes to LTRUE theorem is successful otherwise theorem failed and PC goes

to LFALSE.

Part 4.9 LTRUE goes to LEND. This indicates that granted was indeed suc-

cessful.

Part 4.10 LFALSE goes to LEND. This indicates that granted failed.

Part 4.11 LEND is then end of the program counter and returns a L Graph.

Part 5 grantrule is the recursive call to go through the program counter case

statements found in the sw function. If num = zero then the initial graph starts

with the PC = L0 else the case statement sw is called with grantrule as one of the

parameters, which invokes the recursion.

Part 6 Grant Rule Granted is the theorem for Take, which says for all the

initial L Graph, for all some num (arbitrary number used for recursion) that when

the PC=LEND granted = true.

3.3.4 Create Rule. The CreateRule theory is specified in List 3.19 and

returns true or false if for the digraph specified, X can create vertex A and give the

new edge (X, A) all the rights written as create(X, A, allrights), where all rights are

read, write, take, and grant.

List 3.19: Create Rule

%Part 1:

create_rule [Vertex : TYPE +]: THEORY

%SUBJECT ONLY

BEGIN

61

%Part 2:

Importing cDefinitions[Vertex]

Importing Add_Edge[Vertex]

Importing Graph_Init[Vertex]

%Part3 : loop actions

%Part3 .1:

L0(c: L_Graph): L_Graph = c with [g1:=InitGraph , db:= ADD(c‘db)]

%Part 3.2: creates the new VERT for graph

CREATE_VERT(c: L_Graph , x: Vertex ,y:Vertex):L_Graph = c with

[g1:= AddVert(c‘g1 , y)]

%Part 3.3: creates the new edge for the new vert created.

CREATE_EDGE(c: L_Graph , x: Vertex , y: Vertex):L_Graph = c with [

g1:= AddEdge(c‘g1 , x, y),

db:= AddEdgeAllRights(c‘db , x, y)]

%Part 3.4:

LTRUE(c:L_Graph): L_Graph = c with [created := true]

%Part 3.5:

LFALSE(c:L_Graph): L_Graph = c with [created := false]

%Part 4: %Loop

sw(c: L_Graph , x: Vertex , y: Vertex): L_Graph =

Cases c‘PC of

%Part 4.1:

L0:L0(c) with [PC:=L1],

%Part 4.2: % checks if first node is in graph else quit

L1: c with [PC:=if not member(x, vert(g1(c)))

then LFALSE else L2 endif],

62

%Part 4.3: %creates the new node

L2: CREATE_VERT(c,x,y) with [PC:=L3],

%Part 4.4:

L3: c with [PC:=if member(y, vert(g1(c))) then L4

else LFALSE endif],

%Part 4.5: %creates the new edge to the new node.

L4:CREATE_EDGE(c, x, y) with [PC:=L5],

%Part 4.6:

L5: c with [PC:= if member ((x,y),edges(g1(c))) then

LTRUE else LFALSE endif],

%Part 4.7:

LTRUE:LTRUE(c) with [PC:= LEND],

%Part 4.8:

LFALSE:LFALSE(c) with [PC:= LEND],

%Part 4.9:

LEND: c

Endcases

%Part 5:

can_create(num: nat , x: Vertex , y: Vertex , initial:

L_Graph): Recursive L_Graph = if num =0 then

initial with [PC:=L0]

else

sw(can_create(num-1 ,x,y,initial),x,y)

endif measure num

63

%Part 6:

Create : THEOREM FORALL (initial : L_Graph):

FORALL(num: nat | can_create(num , X, A, initial)‘PC=LEND):

can_create(num , X, A, initial)‘created = true

%Part 7:

END create_rule

Part 2 states that this theory is going to use the cDefinitions, Graph Init, and

Add Edge theories.

Part 3 are the loop actions taken when for the PC functions.

Part 3.1 L0 initializes the graph g1 and also the rights for the edge db.

Part 3.2 CREATE V ERT returns L Graph with the new vertex added to g1.

Part 3.3 CREATE EDGE returns the L Graph with the new edge added to

g1 and the rights for the new edge added to the edge database.

Part 3.4 LTRUE returns L Graph with created set to true

Part 3.5 LFALSE returns L Graph with created set to false

Part 4 is the recursive loop built into a case statement. The recursion moves

as the PC is changed through each iteration. The case statement is called sw which

takes a L Graph, and two vertices. The vertex that is going to create the new vertex

and the new vertex to be created.

Part 4.1 L0 calls loop action L0 and sets PC to L1.

Part 4.2 L1 if the vert that is doing the creating is not a member of g1 then the

PC is set to LFALSE else it is set to L2.

Part 4.3 L2 loop action CREATE V ERT is called and PC is set to L3.

Part 4.4 L3 If the new vert has been added successfully then PC equals L4

otherwise PC is set to LFALSE because the vertex was not created.

Part 4.5 L4 loop action CREATE EDGE is called and PC equals L5.

64

Part 4.6 L5 if the new edge has been successfully added then PC equals LTRUE

else set PC to LFALSE.

Part 4.7 LTRUE goes to LEND. This states that Create was indeed successful.

Part 4.8 LFALSE goes to LEND. This states that Create failed.

Part 4.9 LEND is then end of the program counter and returns a L Graph.

Part 5 can create is the recursive call to go through the program counter case

statements found in the sw function. If num = zero then the initial graph starts

with the PC = L0 else the case statement sw is called with can create as one of the

parameters, which invokes the recursion.

Part 6 Can Create is the theorem for Create, which says that for all the initial

L Graph, for all num (arbitrary number used for recursion), when the PC=LEND

created = true.

3.3.5 Remove Rule. In List 3.20 the RemoveRule theory returns true if, for

the digraph specified, the read right for edge (Y, Z) is removed. If there are no more

rights for that edge, the edge is also removed.

List 3.20: Remove Rule

%Part 1: SUBJECT ONLY

remove_rule [Vertex : TYPE +] : THEORY

BEGIN

%Part 2:

Importing rDefinitions[Vertex]

Importing Graph_Init[Vertex]

Importing RemoveEdge[Vertex]

%Part 3: loop actions

%Part 3.1:

L0(c: L_Graph): L_Graph = c with [g1:=InitGraph , db:= ADD(c‘db)]

65

%Part 3.2:

Remove_Right(c:L_Graph ,e:edgetype ,r:Rights): L_Graph=

%checks to see if the edge has any rights

if empty ?(c‘db(e))

%no rights delete edge

Then Remove_Edge(c,e)

%has rights see if it has right we need

Else (if member(r,c‘db(e))

%has right now remove it

Then c with [db:= RemoveEdgeRight ((c‘db) , e, r) , removed :=true]

else c with [removed :=false]

endif) endif

%Part 3.3:

LTRUE(c: L_Graph): L_Graph = c with [removed := true]

%Part 3.4:

LFALSE(c: L_Graph): L_Graph = c with [removed := false]

%Part 4: %Loop

sw(c: L_Graph , r: Rights , x: Vertex , y: Vertex): L_Graph =

Cases c‘PC of

%Part 4.1: %initializes graph and E_DB

L0:L0(c) with [PC:= L1],

%Part 4.2: % checks if first node is in graph else quit

L1: c with [PC:= if not member(x, vert(c‘g1))

then LFALSE

% checks if second node is in graph else quit

else (if not member(y, vert(c‘g1)) then LFALSE

% checks if needed edge exists else need to obtain...

edge

else L2 endif) endif],

66

%Part 4.3: % checks if the edge even exists in graph.

L2: c with [PC:= if edge?(c‘g1)(x,y) then L3

else LFALSE endif],

%Part 4.4: %removes right or actual edge depending on graph.

L3: Remove_Right(c, (x,y),r) with [PC:= L4],

%Part 4.5:

L4: c with [PC:=

if empty?(c‘db((x,y))) then L3

else LEND endif],

%Part 4.6:

LTRUE : LTRUE(c) with [PC:= LEND],

%Part 4.7:

LFALSE : LFALSE(c) with [PC:= LEND],

%Part 4.8:

LEND: c

Endcases

%Part 5:

can_remove(num: nat , r: Rights , x: Vertex , y: Vertex ,

initial : L_Graph): Recursive L_Graph = if num =0 then

initial with [PC:=L0]

else

sw(can_remove(num-1 ,r,x,y,initial),r,x,y)

endif measure num

%Part 6:

%(Remove , take , X, Y)

Can_Remove : THEOREM FORALL (initial : L_Graph):

FORALL(num: nat | can_remove(num , take , X, Y, initial)‘PC=LEND):

can_remove(num , take , X, Y, initial)‘removed = true

67

%Part 7:

END remove_rule

Part 2 states that this theory is going to use the cDefinitions, Graph Init, and

RemoveEdge theories.

Part 3 are the loop actions taken for the PC functions.

Part 3.1 L0 initializes the graph g1 and also the rights for the edge db.

Part 3.2 Remove Right returns a L Graph with possibly g1, db, and removed

changed. First it checks to see if the edge has any rights. If it does not, it calls

Remove Edge to delete the edge else it checks to see if the right to be deleted is a

part of the right to that edge. If the right exists then RemoveEdgeRight is called,

and the right is removed and removed equals true, else removed equals false.

Part 3.3 LTRUE returns L Graph with removed set to true.

Part 3.4 LFALSE returns L Graph with removed set to false.

Part 4 is the recursive loop built into a case statement. The recursion moves

as the PC is changed through each iteration. The case statement is called sw which

takes a L Graph, the right to be removed, and two vertices. The two vertices are used

to get the edge to delete the right from.

Part 4.1 L0 calls loop action L0 and sets PC to L1.

Part 4.2 L1 if both the vertices passed in as parameters exist as a member of

g1 then the PC is set to L2 otherwise it is set to LFALSE.

Part 4.3 L2 If the edge to delete the right from exists in g1 then PC equals L3,

if not then PC is set to LFALSE because the edge does not exist.

Part 4.4 L3 loop action Remove Right is called and PC equals L4.

Part 4.5 L4 if the edge that the right was removed from has no more rights then

PC equals L3 else PC equals LEND.

68

Part 4.6 L5 if the new edge has been successfully added then PC=LTRUE else

LFALSE.

Part 4.7 LTRUE goes to LEND, which means Remove was indeed successful.

Part 4.8 LFALSE goes to LEND. This means Remove failed.

Part 4.9 LEND is the end of the program counter and returns a L Graph.

Part 5 can remove is the recursive call that goes through the program counter

case statements found in the sw function. If num = zero then the initial graph starts

with the PC = L0 else the case statement sw is called with can remove as one of the

parameters, which invokes the recursion.

Part 6 Can Remove is the theorem for Remove, which says that for all the

initial L Graph, for all num that when PC=LEND removed = true.

Figure 3.7: Example 1 of Can Share Graph G0

3.4 Can Share Algorithm

The Can Share is one of the four main predicates for the Take-Grant Model. It

formally defines the notion of transferring authority [Bis95]. Thus, it is important to

implement in PVS. The Can Share algorithm, List 3.21 uses Figure 3.7 as a reference

even though the algorithm is designed to operate with any number of vertices in the

digraph.

69

List 3.21: Can Share Algorithm

Can_Share(read ,X,Z,graph)

*** Can have a t* or a t*g* path

L0: Initialize the graph and the rights for the edges . If X is not

in digraph then goto LFALSE Else if Z is not in graph then goto

LFALSE

Else if edge (X,Z) does not exist then goto L1

Else if edge(X,Z) contain the read right then goto LTRUE

Else goto L1

L1: if there is at least three vertices in the graph then goto L2

Else goto LFALSE

L2: if Z does nothave incoming edges then goto LFALSE else goto

L3

L3: if X does nothave any edges then goto LFALSE else goto L4

L4: if X has an edge that either has a take or a grant right

then save the other vertex that makes up that edge in a variable

into variable TWO and goto L5 Else goto LFALSE

L5: if an edge exists from TWO to Z with the read right

then goto L6

Else If an edge exists with a take right : save the corresponding

edge vertex into THREE and goto L8

else if an edge exists with a grant right : save the corresponding ...

edge vertex into THREE

goto L9 else goto L4

L6: Add edge(X,Z) with right read to digraph and edge database

goto L7

70

L7: If edge(X,Z) exists in the graph with read right goto LTRUE

L8: add edge(X,THREE) with take right to digraph and edge database

goto L4

L9: add edge(X,THREE) with grant right to digraph and edge

database goto L4

LTRUE Can_Share(read ,X,Z,graph) is true

LFALSE - Can_Share(read ,X,Z,graph) is false

L0 initializes the graph and the edge database then checks to make sure the two

vertices to share rights exist in the digraph and that an edge does not already exist

between them with the correct right. If an edge already exists with the right wanted

then Can Share is true, otherwise it continues on with the algorithm.

L1 checks to make sure that there is at least three vertices in the digraph

otherwise the right cannot be shared and Can Share is false. If it is true go to L2.

L2 checks to see if Z has incoming edges. If Z has no incoming edges, there is

no way X can get shared read rights to it. Therefore, Can Share, is false. Otherwise

go to L3.

L3 checks to see if X has any edges. If it does, go to L4. Otherwise Can Share is

false. Even though Can Share uses a digraph for the take and grant rights direction

is not a concern because of the Take-Grant lemmas.

L4 find an edge leaving X that has either a take or a grant right. In our example

edge (X, Y) has a take so save vertex Y into variable TWO and goto L5. If there are

no edges, the Can Share is false.

L5 finds an edge that exists from the TWO variable to either Z with the correct

right and goes to L6. Or it looks for an edge with a take and goes to L8 or an edge

71

with a grant and goes to L9. If there are no edges with the correct rights and go to

L4 to check if there are anymore edges from X.

L6 adds the edge (X, Z) with read right to the graph and edge database and

goto L7.

L7 double checks to make sure that the edge was successfully added to the

digraph then goes to LTRUE else LFALSE.

L8 and L9 are divided so the proper chain of witnesses can be established. For

an example, consider Figure 3.8 which shows Can Share from (X, Z), but only by

going through vertex A so L8 and L9 are for this situation.

Figure 3.8: Example 2 Can Share Graph G0

L8 adds edge(X,THREE) with a take right to the digraph and edge database.

Goto L4 to continue trying to share read rights to Z to X.

L9 adds edge(X,THREE) with a grant right to the digraph and edge database.

Goto L4 to continue trying to share read rights to Z to X.

LTRUE means that Can Share is true therefore an edge from (X,Z) with read

right can be added or X can obtain the read right.

LFALSE means that Can Share is false and an edge from (X,Z) with read right

can NOT be added.

72

This algorithm operates on the assumption that no matter how many vertices

are in the digraph, only three are examined at a time: hence the variable TWO and

THREE keep track of where the algorithm is in the digraph.

3.5 Contributions to PVS Digraph Library

The Labeled digraph theory is an extension of the digraph theory. Labeled digraph

allows labels to be assigned directly to the edge and keeps them together like a record.

There is really only two differences between digraph and labeled digraph: digraph has

only one parameter of type T and labeled digraph has two parameters T and U, where

U is assumed to be an enumerated type.

Figure 3.9: Partial Digraph Theory.

In digraph, the edgetype is made up of a pair of T. In a labeled digraph edgetype

is a record made up of two fields: edge, which is a pair of T and label, which is a

finite set of U. Pairs and Finite Sets are functions in existing PVS theories: pair

and finite set. All regular digraph functions and lemmas become labeled digraph

functions. In Figure 3.9 and Figure 3.10 selected definitions and functions are shown

73

to highlight the difference between digraph theory and labelled digraph. For both

figures, corresponding numbers are used in the discussion. Line 1 shows the difference

in how edgetype is defined. In digraph it is a simple pair, and in labeled digraph it is

a record holding two fields: edge and label. For both figures lines 2, 4, and 6 involve

only a name change. For lines 3, 5, 7, 8, 9 the difference in the theories is in digraph

edge is used, however in labelled digraph e′edge is used. Because labelled digraph

declares edgetype as a record, access to edge has to be done by using the field name.

Lines 3 and 7 are different in labeled digraphs because of record accession. To

access the edge, first an edgetype has to be accessed, then the individual field has to

be accessed, which is done through ′1 or ′2. For example e′edge′1 accesses the first

field of edge which is a field in edgetype.

Figure 3.10: Partial Labelled Digraph Theory

74

This contribution, which was to incorporate labels into the digraph structure,

was submitted to NASA Langley for inclusion in their PVS libraries, however it was

not used for the thesis because it was developed late in the effort and the structure

for the Take-Grant was already firmly established.

3.6 Summary

The two specification models are described. Chapter 4 explains the proof of the

theorems. Since the Can Share algorithm was discussed in this chapter, the actual

code will be discussed in the next.

75

IV. Proving the Take-Grant Model in PVS

4.1 Introduction

PVS has an integrated proof checker to verify specifications. “The primary

emphasis in the PVS proof checker is on supporting the construction of readable

proofs [SORSC99].” As such, much attention was given to simplifying the process of

developing, debugging, maintaining, and presenting proofs. To assist in developing

proofs, powerful proof commands carry out propositional, equality, and arithmetic

reasoning. Due to the integration between the typechecker and the proof checker,

PVS supports an expressive specification language, while also providing a powerful

theorem proving capability [SORSC99]. “The PVS typechecker analyzes theories for

semantic consistency and adds semantic information to the internal representation

built by the parser [OSRSC99b].”

Theorem proving may be required to establish the type-consistency of a PVS

specification, therefore the typechecker uses the deductive power of the proof checker

to discharge any proof obligations, termed type correctness conditions (TCCs), gen-

erated. TCCs may arise when a term is typechecked against an expected predicate

subtype or as subgoals during proof checking, when the typechecker is invoked to

check user-supplied expressions and quantifier instantiations [SORSC99]. The TCCs

do not have to be proved immediately, but until they are proved, the theory that

generated them is not considered to be typechecked and any theorems proved are

considered to be “proved-incomplete” [OSRSC99b]. The proof representation and

PVS prover commands are discussed in the following subsections.

4.1.1 PVS Proof Representation. PVS proofs follow standard proof theory

when displayed on the screen. The following overview of the proof representation is

taken from the PVS Prover Guide [SORSC99]1 :

PVS has a sequent-style proof representation, which allows the effects
of the prover commands to be understood. A proof tree is maintained,

1For a more indepth understanding of the prover reference PVS Prover Guide, [SORSC99]

76

with the goal being that a proof tree is constructed with all the leaves being
true, thus it is “complete”. Each leave/node is a proof goal in the proof
tree from which, by means of a proof step, spring its children. Each proof
goal is a sequent consisting of a sequence of formulas called antecedents
and a sequence of formulas called consequents.

In PVS, such a sequent is displayed in List 4.1 where the Ai and Bj
are PVS formulas collectively referred to as sequent formulas: the Ai are
the antecedents and the Bj are the consequents; the row of dashes serves
to separate the antecedents from the consequents. In text sequents are
written: A1, A2, A3, ... ` B1, B2, B3...

List 4.1: PVS Sequent Example [SORSC99]

{-1] A1
{-2} A2
[-3] A3

.

.

.

{1] B1
[2] B2
{3} B3

.

.

.

The sequence of antecedents or consequents (but not both) may be
empty. The intuitive interpretation of a sequent is that the conjunc-
tion of the antecedents implies the disjunction of the consequents, i.e.,
(A1

∧
A2

∧
A3...) ⊃ (B1

∨
B2

∨
B3...). The proof tree starts with a root

node of the form ` A, where A is the theorem to be proved. PVS proof
steps build a proof tree by adding subtrees to leaf nodes as directed by the
proof commands. A sequent is true if any antecedent is the same as any
consequent, if any antecedent is false, or if any consequent is true. Other
sequents can also be recognized as true, using more powerful inferences
that will be described later. Once a sequent is recognized as true, that
branch of the proof tree is terminated. The goal is to build a proof tree
whose branches have all been terminated in this way.

Attention is always focused on some sequent that is a leaf node in
the current proof tree–this sequent is displayed by the PVS prover while
awaiting the user’s command. The numbers in brackets, e.g., [-3], and
braces, e.g., 3, before each formula in the displayed sequent are used to
name the corresponding formulas. The formula numbers in square brackets
indicate formulas that are unchanged in a subgoal from the parent goal
whereas the numbers in braces serve to highlight those formulas that are
either new or different from those of the parent sequent.

77

The proof structure makes it easy for the user to understand the effects the

proof command described in the next section have on the proof.

4.1.2 PVS Commands. The commands used to prove the two specifications

are grind, skosimp, induct, lemma, and expand. Their definitions are described

below.

The grind strategy has the syntax “(grind)” which rewrites formulas and re-

peatedly simplifies them. “This is a catch-all strategy that is frequently used to

automatically complete a proof branch or to apply the obvious simplifications till

they no longer apply [SORSC99].” Grind is the short command that applies in

order: install − rewrites, bddsimp, assert, replace∗, and reduce. The command

install − rewrites installs given theories and rewrite rules along with all the rele-

vant definitions in the given subgoal. Bddsimp, which stands for binary decision

diagram simplification, applies propositional simplification and assert simplifies us-

ing the decision procedures to carry out the first level of simplification [SORSC99].

The replace∗ command carries out all the equality replacements, and the ∗ means the

command will be iteratively applied. The command reduce is the “main workhorse”

of the grind command and repeatedly simplifies through the application of the bash

and replace∗ command [SORSC99]. The bash command is another shortcut com-

mand executing in order assert, bddsimp, inst?, skolem − typepred, flatten, and

lift− if commands [SORSC99]. The command inst? instantiates existential strength

quantifiers, while skolem− typepred skolemizes with type constraints, and lift− if

rule lifts the left-innermost contiguous IF or CASES branching structure to the top

level [SORSC99].

Skosimp command which has the syntax (skosimp) is the short version of

(skolem)(flatten). Skolem replaces universal quantifiers with constants and flatten

performs disjunctive simplification [SORSC99].

The induct command syntax is (induct var), which automatically applies an

induction scheme. The variable name var must be quantified at the outermost level

78

of the consequent formula. As long as the bound variable is of a type, such as nat,

the induction scheme is selected automatically. Most induction schemes are found in

the PVS prelude library [OS03].

The lemma command, (lemma name), incorporates lemma name in to the

proof. Additional subgoals may be generated with the addition of the lemma rule

[SORSC99].

The expand command syntax: (expand name) expands and simplifies all

instances of the name [SORSC99].

This remaining sections explain how to prove the TCCs, the theorems for both

specifications, as well as discusses the Can Share algorithm.

Figure 4.1: RemoveEdge TCC1

4.2 Proving the Type Correctness Conditions

Even though two separate specifications were developed, the common imported

theories used in each were very similar, therefore both have the same TCCs to be

proved.

The theory RemoveEdge produces the RemoveEdge TCC1 proof obligation,

Figure 4.1, which states that for all g1 digraphs and e 1 edgetypes, if the remove

function removes e from g1’s edges set then both of the vertices are in the graph.

This TCC is easily discharged with the grind command. Figure 4.2 shows what the

79

Figure 4.2: RemoveEdge TCC1 Proof

RemoveEdge TCC1 looks like in PVS prover. At the prompt “Rule?” the (grind) is

entered which proves the TCC ending in Q.E.D..

The Add Edge theory produces the proof obligation Add Edge TCC1 of Figure

4.3, and of AddVert TCC1, Figure 4.4. The AddEdge TCC states that given two dis-

tinct vertices in the graph, any edges added to the graph is connecting vertices already

in the graph. This TCC is proved through an application of the grind command.

Figure 4.3: AddEdge TCC1

Figure 4.4, the AddVert TCC, states that if a vertex is not already in the graph,

then when it is added there is an edge that connects the vertex to itself. The grind

command also discharges this TCC.

The Graph Init and Grant Graph Init both produce the InitGraph TCC1 be-

cause the initialization function is called InitGraph. However for each theory the TCC

80

Figure 4.4: AddVert TCC1

has to be solved because the function is different, due to edge order. The same goes

for TG Lemma Init Take and TG Lemma Init Grant and the InitGraphL TCC1.

In Figure 4.5 the obligation states it must be proven that for any edge added to

the graph, each vertex is added first to e′1 and then added to e′2 so they show up in

both pairs. Applying the grind command discharges this TCC .

Figure 4.5: InitGraph TCC1

There are ten TCCs which are particular to the second specification two each

from Node ops, take, grant, CREATE and the Remove theory. Node ops produces

two TCCs for set Node e1 TCC1, Figure 4.6, and set Node e1 TCC1, Figure 4.7.

Figure 4.6, the first TCC, is to establish that v is a finite set. If it is not empty

then it is non-empty and therefore has values in it. This can be discharged by applying

81

Figure 4.6: set Node e1 TCC1

the grind command. The second TCC, Figure 4.7, validates that the not empty finite

set v implies a value can be chosen out of the set and this decreases the cardinality

of the set. This TCC is discharged through the prover commands (grind)(rewrite

“card remove”)(assert).

Figure 4.7: set Node e1 TCC2

Each of the main rules produce two TCC’s for their theorems. The take rule pro-

duces takerule TCC1 and takerule TCC2; grant rule produces grantrule TCC1 and

grantrule TCC1; CREATE produces can create TCC1 and can create TCC2, while

Remove produces can remove TCC1 and can remove TCC2. However, the only dif-

ference between the TCC1s are the name, likewise with TCC2s. These TCCs establish

that the recursion stops. In Figure 4.8 the obligation is to prove that for all num’s,

num is not equal to zero implies that num minus 1 will be greater than or equal to

zero.

Figure 4.8: takerule TCC1

82

The second TCC in Figure 4.9 is to prove that all num’s are not equal to zero

and num minus one is less than num. Both of these TCCs are discharged with the

grind command.

Figure 4.9: takerule TCC2

After all the TCCs are proved then each theorem can be “proved-complete”

once it itself proves.

Figure 4.10: Take and Grant Rule Theorems

4.3 Take-Grant Model One - No Error Checking - Proofs

The Model one specification does not incorporate automatic error checking. The

theorems are straightforward and require knowledge of graph for the manual input

and decision making.

83

Both of the theorems in TakeRule, along with the GrantRule, Figure 4.10, use

the commands (grind) and (lemma “not eq ax”). Depending on the order of the

commands either (grind)(lemma “not eq ax”)(grind) or (lemma“not eq ax′′)(grind)

will work. The former was first used, because it was not apparent immediately the

vertices would need to be proved not equal. In the first case (assert) can also be

substitute for the last grind. The lemma command can be invoked first, then the

grind command which takes slightly less time.

The two theorems in CreateRule and the one in RemoveRule, Figure 4.11, only

use the (grind) rule. CreateRule would have used the lemma rule however A is

declared in CreateRules functions to not be equal to the other vertices.

Figure 4.11: Create and Remove Theorems

4.4 Take-Grant Model Two - Error Checking - Proofs

This specification incorporates automatic error checking. The theorems use

recursion to facilitate the error checking thus no prior knowledge of the graph is

needed to test the theorems. However, problems were found in the Take and Grant

rules, when attempting to use a variable to specify a value for a function. Either

the variables caused a non-terminating recursion or the right proof commands could

not be determined. Because the Take and Grant rule should only be run on a 3

84

vertex graph, which is how the basic rules are defined, hard coding the vertices is

not a problem if the X,Y,Z graph never changes. The Create and Remove rules are

straightforward and do not need prior knowledge of the graph to run. The theorems

listed in Figure 4.12 are similar except for the variable used to prove true.

Figure 4.12: Take, Grant, Create and Remove Theorems

Because all the theorems are similar only the Take rule will be examined. In

List 4.2 the execution of the Take rule in PVS is shown. Because certain commands

produce the same results the intervening steps have been deleted to simplify the

example.

List 4.2: Execution of the Take Rule in PVS: Take Rule Taken: Step 1

Take_Rule_Taken :

|-------

{1} FORALL (initial : L_Graph):

FORALL (num: nat | takerule(num , read , X, Z, initial)‘PC...

= LEND):

takerule(num , read , X, Z, initial)‘taken = TRUE

Rule ? (skosimp)

85

In the List 4.2 shows what the Take rule looks like right after the prover is in-

voked. The first command to run is (skosimp) which replaces the universal quantifier

FORALL (initial:L Graph). The result of the command is in List 4.3.

List 4.3: Execution Take Rule Taken: Step 2

Take_Rule_Taken :

|-------

{1} FORALL (num: nat | takerule(num , read , X, Z, initial !1)‘PC =

LEND): takerule(num , read , X, Z, initial !1)‘taken

Rule ? (induct ‘‘num ’’)

The expression in List 4.3, is of the form (FORALL (P:pred[t]): induction sub-

goal implies goal), where p is to be instantiated by the induction predicate [SORSC99].

The command run is (induct “num”). Because num is a natural number the induc-

tion scheme is employed automatically. Employing (induct) simplifies the formula to

a base case and induction subcases. Therefore, three subgoals result.

List 4.4: Execution Take Rule Taken.1

Take_Rule_Taken .1 :

|-------

{1} takerule(num!1, read , X, Z, initial !1)‘PC = LEND {2}

takerule(num!1, read , X, Z, initial !1)‘taken

Rule ? (grind)

This completes the proof of Take_Rule_Taken .1.

The first subgoal, Take Rule Taken.1, is in List 4.4. The subgoal numbers are

added after the theorem name. Because there is only a single consequent for this

86

subgoal which only requires definition expansion, grind is a good command to choose.

Grind rewrites and simplifies the subgoal and proves the subgoal in this case.

The next subgoal, Take Rule Taken.2, is also proved using grind. Take Rule Taken.3

is another induction. After using (induct “j”) two subgoals are generated. The first

subgoal Take Rule Taken.3.1 is solved through grind. The second subgoal Take Rule Taken.3.2

produces 5 subgoals after “grinding”.

List 4.5: Execution Take Rule Taken.3.2.1

Take_Rule_Taken .3.2.1 :

{-1} j!1 >= 0

{-2} L1?(takerule(j!1, read , X, Z, initial !1)‘PC)

{-3} edges(takerule(j!1, read , X, Z, initial !1)‘g1)(X, Z)

{-4} takerule(j!1, read , X, Z, initial !1)‘db(X, Z)(read)

|-------

Rule ? (expand ‘‘takerule ’’)

The first subgoal, Take Rule Taken.3.2.1, List 4.5 above, only has antecedents.

By applying the rule (expand “takerule”) the definition of takerule is expanded allow-

ing the resulting expressions to be simplified using decision procedures and rewrit-

ing [SORSC99]. The resulting expression can be simplified through a grind command,

which results in the List 4.6.

List 4.6: Execution Take Rule Taken.3.2.1

Take_Rule_Taken .3.2.1 :

[-1] j!1 >= 0

{-2} L0?(takerule(j!1 - 1 , read , X, Z, initial !1)‘PC)

{-3} Y = X

{-4} add(read , emptyset[Rights[Vertex]])(read)

|-------

{1} j!1 = 0

87

In Take Rule Taken.3.2.1 antecedent {-3} is Y = X. However in the definitions

file the axiom not eq ax states that none of the vertices are equal to each other

thus Y ! = X. To use that axiom in the proof it must be invoked which is done

through (lemma “not eq ax”) command. Thus the expression in List 4.7 becomes

trivial because of the contradiction of {−1} and [−4]. The axiom still needs to be

asserted. The (assert) command moves the antecedent {−1} down to a consequent

of the form Y = X and Z = Y and X = Z. Because Y = X and Y = X are

in both the antecedent and the consequent, it is true, which completes the proof

Take Rule Taken.3.2.1.

List 4.7: Execution Take Rule Taken.3.2.1

Take_Rule_Taken .3.2.1 :

{-1} X /= Y AND Y /= Z AND Z /= X

[-2] j!1 >= 0

[-3] L0?(takerule(j!1 - 1 , read , X, Z, initial !1)‘PC)

[-4] Y = X

[-5] add(read , emptyset[Rights[Vertex]])(read)

|-------

[1] j!1 = 0

Rule ? (assert)

This completes the proof of Take_Rule_Taken .3.2.1.

Through the application (grind), (expand“takerule”), (lemma “not eq ax”), and

(assert) the rest of the takerule theorem is proved. The entire proof is proved when

“Q.E.D.” is reached.

88

Figure 4.13 shows the complete proof schema of takerule.

Figure 4.13: Take Picture Proof

All the rules use (skosimp), (induct “num”), (induct “j”), (grind), (expand

“theorem name”), (lemma “not eq ax”), and (assert).

89

The application of the rules in the same order will prove the Grant rule as shown

in Figure 4.14.

Figure 4.14: Grant Picture Proof

90

The Create rule, however, requires a different order of the commands applied.

Because there are fewer case statements, there are fewer subgoals. The Create rule is

shown in Figure 4.15.

Figure 4.15: Create Picture Proof

91

The Remove rule also has a different number of subgoals, as Figure 4.16 shows.

Figure 4.16: Remove Picture Proof

92

4.5 Can Share Algorithm

The Can Share algorithm is very involved and difficult to implement in PVS.

It follows the same form as the Model 2 specifications. It uses recursion to move

through the case statements which in turn call functions to manipulate the graph

or to error check the algorithm. Ideally, no prior knowledge of the graph would be

needed when the theorems are tested. After the graph is instantiated, it should not

have to remembered it to get the theorems to run correctly, which is why there is error

checking. For both the Take and Grant rule, three vertices and two edges are involved.

This is the basis of the Can Share algorithm and code, which was designed for a 3+

vertex graph. It finds the first three vertices and edges that correctly implement

the rule then connect the outer two vertices with an edge. If there are more than 3

vertices, it will start over again. This way the problem is always working off a three

node system. For simplicity, the current nodes are saved into variables labelled one,

two, and three. In the following two subsections the imported theories are discussed

then the Can Share code.

4.5.1 Theories Imported for Can Share. Can Share uses two theories,

Add Edge (List 3.2) and Graph Init (List 3.3), which are discussed above. The only

difference is the definition file is changed to csDefinitions for Can Share.

csDefinitions Theory

Except for additions to Parts 8 and 11 and the addition of a new Part 9, this

theory as shown in List 4.8 is similar to the Model 2 definitions file.

List 4.8: csDefinitions Theory

%Part 1:

csDefinitions [Vertex : Type +]: THEORY

BEGIN

93

%Part 2:

Importing digraphs@digraphs[Vertex]

Importing digraphs@digraph_ops[Vertex]

Importing digraphs@digraph_deg[Vertex]

%Part 3: % declares TYPE of right works

Rights : TYPE = {read , write , take , grant } right : TYPE =

setof[Rights] containing emptyset[Rights]

%Part 4:

E_DB: TYPE = function[edgetype[Vertex]->set[Rights]]

%Part 5:

X,Y,Z,A,B: Vertex

%Part 6:

nil: Vertex

%Part 7:

PCT: TYPE =

{L00 ,L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L9t ,L9g ,L10 ,L11 ,L12 ,L13 ,L14 ,L15...

,L16 ,LTRUE ,LFALSE ,TG_EDGE ,LEND}

%Part 8

node : TYPE = [#

dest: Vertex ,

source : Vertex ,

e1: edgetype , % outgoing selected edge

ie: finite_set[edgetype], % all incoming edges

e2:edgetype , % incoming selected edge

ie1: finite_set[edgetype], % contains incoming edges ...

not visited

oe: finite_set[edgetype], % all outgoing edges

oe1: finite_set[edgetype], % edges modified

94

oe2: finite_set[edgetype], % contains outgoing edges ...

not visited

oec: nat , % outgoing edge card

iec:nat , % incoming edge card

ine1:finite_set[edgetype],

ine2:finite_set[edgetype],

e3:edgetype , % incident selected edge

inec:nat % incident edge card

#]

%Part 9

n_db: TYPE = function[Vertex -> node]

%Part 10:

found:type = {yes , no , un}

%Part 11:

L_Graph : TYPE = [#

g0: digraph[Vertex],

g1: digraph[Vertex],

db: E_DB ,

PC: PCT ,

Node: n_db ,

verts: set[Vertex],

shared : bool ,

FOUND:set[found],

one: Vertex ,

two: Vertex ,

three: Vertex ,

addright : Rights ,

good_nodes : set[Vertex]

#]

%Part 12:

null: edgetype = (nil ,nil)

95

%Part 13:

not_eq_ax : AXIOM X/=Y and Y/=Z and Z/=X and X/=A and A/=Y and A/=Z

%Part 14:

END csDefinitions

In Part 8, type node has more attributes outgoing edges oe, oe1, oe2, incoming

edges ie, ie1, and incident edges ine1, ine2. Additionally nodes have attributes for a

selected outgoing edge, e1; incoming edge, e2; and incident edge, e3. There is also

a variable to track the cardinality of each edge set oec, iec, inec. The need for these

multiple variables for edge sets will be explained with the following cNode ops theory.

Part 9 declares a type found.

Part 11 declares a few more state variables: g0 is another digraph, verts is

a set of vertices, shared returns true or false depending on if the right can be

shared, FOUND is a set of found, and the variables one, two, three are vertex, and

good nodes is a set of vertices.

cNode ops Theory

This theory, List 4.9 declares all the operations on the node state.

List 4.9: cNode ops Theory

%Part 1:

csNode_ops [Vertex : TYPE +]: THEORY

BEGIN

%Part 2:

Importing csDefinitions[Vertex]

%Part 3: %initialize node

Node_ops(Node: n_db , c: L_Graph , x: Vertex , oes:

96

finite_set[edgetype], flag:bool , ae:edgetype):n_db = Node with

[(x):=(#

%outgoing edges

%takes all edges

oe:= if nonempty ?(oes) then oes else emptyset[edgetype]endif ,

%this should add together the difference of oe(all ...

outgoing edges (incase one is added) , and oe1

% edges(that might be modified) with oe2 which does not ...

contain the edges already visited.

oe1 := if nonempty ?(oes) then union(difference(Node(x)‘oe,

Node(x)‘oe1),Node(x)‘oe2)else emptyset[edgetype]endif ,

e1:= if flag then ae else (if nonempty ?(Node(x)‘oe1) then

choose(Node(x)‘oe1) else null endif) endif ,

%removes edge that is visited are going to

oe2 := if (member(Node(x)‘e1,Node(x)‘oe1)) and

nonempty ?(Node(x)‘oe1) then remove(Node(x)‘e1,Node(x)‘oe1)...

else

Node(x)‘oe1 endif ,

oec := card(Node(x)‘oe2),

%incoming edges

ie:= incoming_edges(x,c‘g1),

e2:= if nonempty ?(Node(x)‘ie) then choose(Node(x)‘ie) else null ...

endif , % edge

ie1 := if (member(Node(x)‘e2,Node(x)‘ie)) and

nonempty ?(Node(x)‘ie) then remove(Node(x)‘e2,Node(x)‘ie) else

Node(x)‘ie endif , iec:=card(Node(x)‘ie1),

%incident edges

ine1 := if nonempty ?(incident_edges(x,c‘g1)) then

incident_edges(x,c‘g1) else emptyset[edgetype] endif ,

e3:= if nonempty ?(Node(x)‘ine1) then choose(Node(x)‘ine1) else ...

null endif , % edge

ine2 := if (member(Node(x)‘e3,Node(x)‘ine1)) and

nonempty ?(Node(x)‘ine1) then remove(Node(x)‘e3,Node(x)‘ine1) ...

else Node(x)‘e3 endif ,

inec := card(Node(x)‘ine2),

97

%other

source := x,

dest := if Node(x)‘e1=null then nil else Node(x)‘e1 ‘2 endif

#)]

%Part 4: %update node dest and source

Node_update(Node: n_db , x: Vertex , e1: Vertex , e2: Vertex):n_db =

Node with [(x)‘dest := e2 ,(x)‘source := e1 , (x)‘num :=0]

%Part 5: %update incident edges for node

Node_INE_update(Node: n_db , c: L_Graph , x: Vertex , ines:

finite_set[edgetype]):n_db = Node

with [(x)‘e3:= if nonempty ?(Node(x)‘ine1) then choose(Node(x)‘...

ine1) else null endif ,

(x)‘ine2 := if (member(Node(x)‘e3,Node(x)‘ine1)) and nonempty...

?(Node(x)‘ine1)

then remove(Node(x)‘e3 ,Node(x)‘ine1)else Node(x)‘ine1 ...

endif]

%Part 6: %initializes all nodes

set_Node(c: L_Graph , v: finite_set[Vertex], n: n_db): recursive

L_Graph =

if empty ?(v)then c

else let a = choose(v) in set_Node(c, remove(a,v) , Node_ops(c‘...

Node ,c,a, outgoing_edges(a, c‘g1) , false , null))

endif measure card(v)

%Part 7: %finds the first node in all the edges that have the ...

required right to the last node

find_good_node(c: L_Graph , e:edgetype , r:Rights): L_Graph = if not

member(r,c‘db(e)) then c else (if nonempty ?(c‘good_nodes) then c

with [good_nodes := add(e‘1,c‘good_nodes)]

else c with [good_nodes :=add(e‘1,emptyset[Vertex])]

endif) endif

98

% send in the node to connect to with what right to get

% it will find all the incoming edges that has that right

%Part 8: %finds last edge

Find_last_edge(c: L_Graph , e: finite_set[edgetype], r:Rights):

recursive L_Graph =

if empty ?(e)then c

else let a = choose(e) in Find_last_edge(find_good_node(c, a, ...

r) , remove(a,e) , r)

endif measure card(e)

%Part 9:

END csNode_ops

In Part 3, the Node ops function is the main workhorse for the theory. This

function sets all the variables the first time out and is used during updates. The first

variable oe takes all the outgoing edges for the vertex or sets itself to empty if there

are none. Oe1 contains all the edges except for the ones already visited which allows

new edges to be added. Oe2 contains only the edges not visited. E1 contains the first

selected outgoing edge for the vertex. Oec is the cardinality of oe2. The incoming and

incidental edge variables are similar to the outgoing edges. Ie contains all incoming

edges. Ie1 is all the edges that haven’t been visited. E2 is the selected incoming edge

variable and iec is the cardinality of ie1. Ine1 contains all the incidental edges. Ine2

contains all the incidental edges not visited. E3 is the selected incidental edge. Inec

is the cardinality of ine2. Source is first set to the vertex itself then is set to the

vertex that called it. Dest is the destination node that is set first set to e1’s second

vertex.

Node update in Part 4 updates the source and the dest for the vertex.

In Part 5, Node INE update updates all the incidental edge variables.

99

Part 6 set Node is the recursive call that originally sets each vertices’ attributes.

Part 7 the find good node function takes the edge sent to it and determines

if the needed right, in this example read, is in the edge database. If the right is,

good nodes is updated with the edges first vert (Y in this example). This will cycle

through all the edges getting all the vertices that are connected to the node to share

rights from. If the algorithm hits a good node the theorem will be correct.

In Part 8, Find last edge is a recursive function that goes through the last

node, in this example Z, incoming edges calling the function find good node to find

all the nodes that have edges connected to Z.

tgedge Theory

This theory in List 4.10 finds the tg edge for the first leg of the rule with

TG edge? then for the second leg of the rule with Find edge out?.

List 4.10: tgedge Theory

%Part 1:

tgedge [Vertex : TYPE +] : THEORY

BEGIN

%Part 2:

Importing csDefinitions[Vertex]

Importing csNode_ops[Vertex]

%Part 3: %Don ’t care about Direction as long as T/G

TG_edge ?(c: L_Graph , x: Vertex): L_Graph = if

member(take ,c‘db(c‘Node(x)‘e3)) or

member(grant ,c‘db(c‘Node(x)‘e3))

% this should save x into the source node , and the start node ...

into dest. to use Find_edge

then c with [Node:= Node_update(c‘Node , x, c‘Node(x)‘e3 ‘2,

c‘Node(x)‘e3 ‘1) , FOUND:=add(yes , emptyset[found])]

100

else(if c‘Node(x)‘inec =0

then c with [FOUND:=add(no , emptyset[found])]

% go get another incoming edge

else c with [Node := Node_INE_update(c‘Node , c, x, ...

incident_edges(x, c‘g1)), FOUND:=add(un , emptyset[found])...

]

endif)endif

%Part 4: %finds edge for the second leg of the Take rule

Find_edge_out ?(c: L_Graph , x: Vertex): L_Graph =

If not c‘Node(x)‘oec = 0

then c with [Node := Node_ops(c‘Node ,c,x,outgoing_edges(x,c‘g1...

), false , null)]

else c Endif

%Part 5

END tgedge

In Part 3 TG edge? finds an incidental edge that has a take or a grant right.

For the take or the grant, the direction of the edge does not matter, which is why the

incidental edge is used here. If the node is found, FOUND is set to “yes” and the

node source and destination variables get updated. If the edge is not found and the

cardinality of the edge set inec is not zero, then the FOUND variable is set to “un”,

if the cardinality is zero, the set is empty and FOUND is set to “no”.

Part 4 Find edge out? finds the next edge for the rule. Direction is important on

the second edge, because this edge might contain a read or a write. If the cardinality of

the outgoing edges is zero then L Graph is unchanged otherwise L Graph is returned

with the node updated through a call to node ops

101

4.5.2 Can Share Code. The following code in List 4.11 is currently non-

proved, but typechecked. Can Share is discussed in slightly different manner than the

rules above because it is more involved.

List 4.11: Code for Can Share

Can_Share [Vertex : TYPE +]: THEORY

%**** SUBJECT only CAN_SHARE ** can have a t* path or a t*g* path

BEGIN

Importing csDefinitions[Vertex] % contains the definitions

Importing csInitialization[Vertex] % initializes the graph

Importing csNode_ops[Vertex] % contains operations on the nodes

Importing csAdd_Edge[Vertex] % Adds the edges and edge rights

Importing tgedge[Vertex] % finds edges

%loop actions

%sets: one ,

L00(c: L_Graph , x:Vertex , y:Vertex): L_Graph = c with [g0:=

InitGraph ,g1:=InitGraph , db:= ADD(c‘db) , one:=x]

%sets: the node information

L2(c: L_Graph , x: Vertex):L_Graph = set_Node(c, vert(c‘g1),

c‘Node)

L4(c: L_Graph , x: Vertex , r:Rights):L_Graph = Find_last_edge(c,

incoming_edges(x,c‘g1) , r)

%Finds the first edge from the beginning node with a t or g

TG_EDGE(c: L_Graph , x: Vertex , n: n_db):L_Graph = TG_edge ?(c, x)

%sets two

set_two(c:L_Graph , x: Vertex): L_Graph = c with [

two:=c‘Node(x)‘dest]

102

L9(c: L_Graph , x: Vertex , r:Rights):L_Graph = c with [Node:=

Node_update(c‘Node , x, c‘Node(x)‘e1 ‘1, c‘Node(x)‘e1 ‘2),

addright :=r]

%sets: three

set_three(c:L_Graph , x: Vertex): L_Graph = c with [

three :=c‘Node(x)‘dest]

%adds new edge to graph , adds new edge right to edge_db , and ...

updates the node

L3(c: L_Graph , x: Vertex , y: Vertex , r: Rights):L_Graph = c with [

g1:= AddEdge(c‘g1 , x, y),

db:= AddEdgeRight(c‘db , x, y, r),

Node := Node_ops(c‘Node , c, x,outgoing_edges(x, c‘g1) , true , (x...

,y))]

%finds edge from second node

L14(c: L_Graph , x: Vertex , n: n_db): L_Graph = Find_edge_out ?(c, x)

LTRUE(c:L_Graph): L_Graph = c with [shared := true]

LFALSE(c:L_Graph): L_Graph = c with [shared := false]

%--

%Part 3:% Switch Loop

sw(c: L_Graph , r: Rights , x: Vertex , y: Vertex): L_Graph =

Cases c‘PC of

%Part 3.1: % initializes graph and E_DB

L00: L00(c,x,y) with [PC:=L0],

%Part 3.2: % checks if first node is in graph else quit

L0:c with [PC:= if not member(x, vert(g1(c))) then LFALSE

% checks if second node is in graph else quit

103

else (if not member(y, vert(g1(c))) then LFALSE

% checks if needed edge exists else need to obtain ...

edge

else(if not member ((x,y),outgoing_edges(x, c‘g1)) then L1

% checks if edge exists it has right needed else need ...

to obtainedge with correct right

else (if member(r,(c‘db(x,y))) then LTRUE else L1 endif)

endif) endif) endif],

%Part 3.3: % checks if there are at least 3 verts in graph else ...

quit

L1: c with [PC:= if card[Vertex](vert(g1(c))) >=3

then L2 %yes

else LFALSE endif], %no

%Part 3.4: % initializes the nodes and sees if there is edges going...

into end node

L2: L2(c, x) with [PC:=L3],

%Part 3.5: % checks to see if the node to share rights to has an ...

incoming edge

L3: c with [PC:=if c‘Node(y)‘iec =0 then LFALSE

else L4 endif],

%Part 3.6: % goes and find all the edges going to the last node ...

with the needed right

L4: L4(c, x, r) with [PC:= TG_EDGE],

%Part 3.7: % goes to find an edge with TG

TG_EDGE:TG_EDGE(c, c‘one , c‘Node) with [PC:=L5],

%Part 3.8:

L5: set_two(c, x) with [PC:=L6],

104

%Part 3.9:

L6: c with [PC:=

%haven ’t found an edge and more edges

if member(un,c‘FOUND) then TG_EDGE

%if not found and no more edges LFALSE else continue

else (if member(no,c‘FOUND) then LFALSE else L7 endif) ...

endif],

%Part 3.10: % checks if destination node has edges , then if the ...

destination node edge contains

%the node needed , then if right needed is there

L7: c with [PC:=

%does the dest node have incidental edges

if nonempty ?(c‘Node(c‘two)‘ine2)

then L8

else TG_EDGE

endif],

% is the node needed selected , then checks to see if it is the ...

correct right for that edge

%Part 3.11:

L8: c with [PC:=

%checks to see if we get the node we need in X’s ...

destination nodes current edge selected

if not member(c‘Node(c‘two)‘e3 ‘2, c‘good_nodes)

%no

then L10

%yes: now does the dest node edge contain the right needed

else (if (member(r, c‘db(c‘Node(c‘two)‘e3)))

%yes

then L9

%no

else L10 endif)endif],

105

%Part 3.12: % updates X’s destination node ’s destination , sets the ...

right to add to edge

L9: L9(c, c‘two , r) with [PC:=L12],

%Part 3.13: % adds a take to edge

L9t: L9(c, c‘two , take) with [PC:=L12],

%Part 3.14: % adds a grant to edge

L9g: L9(c, c‘two , grant) with [PC:=L12],

%Part 3.15: % Checks if take is in the new edge set of rights

L10: c with [PC:=

if (member(take , c‘db(c‘Node(c‘two)‘e3)))

%yes

then L9t

%no

else L11 endif],

%Part 3.16: %if grant is in the edge

L11: c with [PC:=

if (member(grant , c‘db(c‘Node(c‘two)‘e3)))

%yes

then L9g

%no

else L14 endif],

%Part 3.17:

L12: set_three(c, c‘two) with [PC:=L13],

%Part 3.18: % adds edge to graph and adds right edge to database

L13: L13(c, c‘one , c‘three , c‘addright) with [PC:=L16],

%goes to find another edge for second leg of take rule

%Part 3.19:

L14: L14(c, c‘two , c‘Node) with [PC:= L15],

106

%Part 3.20:

L15: c with [PC:= if nonempty ?(outgoing_edges(c‘two ,c‘g1))

then L7

else (if c‘Node(c‘one)‘oec =0

then LFALSE

else TG_EDGE endif) endif],

%Part 3.21:

L16: c with [PC:=

% checks if edge has right needed else

if member(r,(c‘db(x,y))) then LTRUE else TG_EDGE endif],

%Part 3.22:

LTRUE : LTRUE(c) with [PC:= LEND],

%Part 3.23:

LFALSE : LFALSE(c) with [PC:= LEND],

%Part 3.24:

LEND: c

Endcases

%Part 2:

can_share(num: nat , r: Rights , x: Vertex , y: Vertex , initial:

L_Graph): Recursive L_Graph = if num =0 then

initial with [PC:=L00]

else

sw(can_share(num-1 ,r,x,y,initial),r,x,y)

endif measure num

107

%Part 1:

Can_Share_correct : THEOREM FORALL (initial : L_Graph): FORALL(num:

nat | can_share(num , read , X, Z, initial)‘PC=LEND):

can_share(num , read , X, Z, initial)‘shared = true

END Can_Share

Part 1 is the theorem Can Share correct which calls the recursive function

Can Share in Part 2.

Part 2 in turn calls the function sw, Part 3, which is the case statements and

what the recursive call from Part 2 cycles through using the program counter (PC).

Part 3.1 and 3.2 initialize the graph and do the first round of error checking. If

the edge is not found with the correct right, go to Part 3.3 to try to find a path to

share rights or if it is found with the correct right, go to Part 3.22 which sets shared

to true.

Part 3.3 checks to see if the graph has at least 3 vertices. If it does not, go to

Part 3.33 which will set shared to false. Proving there were at least 3 nodes in the

graph was not accomplished.

In Part 3.4 each vertices node attributes are set. L2 calls the loop action L2

which in turn calls the set Nodefunction in Node ops. then goes to Part 3.5

Part 3.5 makes sure the node to share to, in this example Z, has incoming edges

by checking the cardinality of the incoming edge variable set for Z. Another difficulty

in the proof has to do with referencing the variable iec. If the vertex does have

incoming edges denoted by the cardinality being greater than zero, go to Part 3.6 else

go to Part 3.33.

Part 3.6 calls the loop action L4 which calls the function find find last edge

from Node ops. This makes sure there are edges actually going into the node to share

from with the set of rights needed. In this case Z has an incoming read edge. Then

Part 3.7 is called.

108

TG EDGE in Part 3.7 finds the first edge to enact the Can Share rule. It calls

the function TG edge?, then goes to Part 3.8.

Part 3.8 sets the two variable with X’s dest value.

Part 3.9 checks the FOUND variable. If “un” is the member of FOUND then

Part 3.7 is called again, if “no” is the member then Part 3.23 is called because shared

will be false; otherwise continue to Part 3.10.

Part 3.10 checks to see if c′two (X’s Destination vertex) has incidental edges. If

it does go to Part 3.11 else go back to Part 3.7.

Part 3.11 checks to see if c′two’s (Y) selected incidental edge (e3) contains a

good node for the vertex to share from (Z). If it does not contain a good node go to

Part 3.15. If it does contain a good node check verify again that it contains the right

needed then go to Part 3.12 else go to Part 3.15.

Part 3.12 this calls the loop function L9 which calls Node update. Then Part

3.17 is called.

Part 3.13 is the same as 3.12 except the right sent to the loop action L9 is take.

Part 3.14 is the same as the Part 3.11 and 3.12 except the right sent to the Loop

action L9 is grant.

Part 3.15 checks to see if edge in c′two’s e3, the selected incidental edge has a

take edge. If it does Part 3.13 is called otherwise Part 3.16 is called.

Part 3.16 checks to see if edge in c′two’s e3, the selected incidental edge has a

take edge. If it does, Part 3.14 is called otherwise Part 3.19 is called.

Part 3.17 this sets the c′three variable. In this example it is set to Z. If the

graph was bigger it would be set to a different vertex. Then, Part 3.18 is called.

Part 3.18 this calls the loop function L13 and adds the new edge to the graph

and the right to the edge database. The right added is the right that was entered for

the theorem. Then Part 3.17 is called.

109

Part 3.19 calls the loop action L14 to go find another edge, by calling the

Find edge out? function from the tgedge theory. Then calls Part 3.20.

Part 3.20 checks to see if the c′two still has outgoing edges. If it does then Part

3.10 is called. If c′one (X) still has outgoing edges go to Part 3.7 else go to Part 3.23.

In Part 3.21 the newly added edge is checked to see if the right needed is part

of its edge rights. If it is then Part 3.22 is called. If not, then Part 3.7 is called.

Part 3.22 is called if Can Share is true. Then goes to Part 3.24 by setting PC

equal to LEND.

Part 3.23 is called if Can Share is false. Then goes to Part 3.24 by setting PC

equal to LEND.

Part 3.24 is the end of the switch statement and signals the end of the recursion.

This code as stated above is typechecked, but yet unproved. The issues that

continually occur concern the edge functions, outgoing edges, incoming edges, inci-

dental edges and the cardinality of them. Each use of node attributes appears to

induce another round of recursion, which is likely the reason during the proof, the

proof tree grew continually.

4.6 Summary

This chapter discusses hate PVS Prover and provides detailed examples of proof

session to solve the TCCs and theorems for both model specifications, as well as

Can Share code. Chapter 5 discusses the results of this research.

110

V. Conclusions

5.1 Significance of Findings

The two Take-Grant rule specification models along with the Can Share predi-

cate automated in PVS are an important step in automating a safety proof for a given

computer system. The first research goal of implementing the rules was accomplished.

However, what originally seemed an easy problem, proved to be more complicated,

which inspired two separate specification models.

The first model has no error checking and uses a straightforward method of

incorporating the required data correctly for each theorem. Each time a function is

required to prove the theorem, the graph is initialized before that function can be

called. Model 1 is somewhat unwieldy and prone to human error due to the manual

data entry. It is time consuming to do manual error checking since PVS typechecking

and prover are of limited help if data are entered incorrectly into the functions.

Model 2 with error checking is more user friendly. Once the algorithm for each

rule is correctly transformed into code, the user can test different theorems against

the initialized graph. The Can Share code allows theorems to be reused for any graph

initialized.

The Take-Grant rules which originally were thought to be simple to implement

in PVS turned out to be a challenge. Instead of being able to implement a complete

system with subjects and objects, the rules were implemented using a subject only

digraph and are too simplistic for a real computer system.

The goal of proving the consistency of formal model specifications and proving

an application of the Take-Grant rules produce a valid model was partially proved.

The individual Take-Grant rules did indeed produce a valid model. The power of the

Take-Grant Protection Model is in the predicates, like Can Share, which produces a

better representation of a valid model.

The contributed labelled digraph theory was submitted to NASA Langley and

is currently under review for inclusion in their PVS libraries.

111

5.2 PVS Issues

There are several issues associated with using the Prototype Verification System.

PVS has a steep learning curve–it is not easily learned. It is estimated that a skilled

computer scientist will require approximately six months to become proficient in PVS.

Because the PVS user community is not large, it is sometimes difficult to get assistance

with problems. There is a PVS help site, which provides limited help and question

posting capability.

The documentation for PVS is not geared towards the beginner as it assumes

familiarity with proof concepts and mechanical theorem proving structure. PVS is a

logic language and not programming language. Therefore, to reason about algorithms

or programs individuals must create infrastructure, namely a “state”. Learning to

write a formal specification is a big challenge–conceptualizing the difference between

writing a mathematical specification and programming, involves learning to think

“functionally.”

Training classes for PVS are held every couple of years. This year a class was

offered, however it occurred late in the thesis process. Discussions on implementing

the Take-Grant Model during the class, indicated this research is better suited for a

PhD-level effort.

One of the problems that became apparent after implementing the Model 2

specification was PVS does not support standard programming constructs such as

iteration. Rather, bounded recursion is used to express an iteration, which caused

several problems due to the depth of the recursive calls. Another problem is there is

no visual representation of the digraph after changes are made–it all must be tested

with error checking or crafting appropriate theorems.

5.3 Future Research

Future research should include completing the proof of Can Share code, which

is a key predicate for the Take-Grant Protection Model and developing a proof of the

112

Can Know predicate which is key for describing the flow of information. Because the

current rules do not resemble an actual system, adaptation of the current rules to use

a subject/object digraph is also necessary. Adapting the model to incorporate modal

logic will likely result in a more powerful and expressive model.

113

Appendix A. PVS Theories

To get additional proofs and/or the theory files please contact:

Air Force Institute of Technology

Dr. Rusty Baldwin

email: rusty.baldwin@afit.edu

phone: 937-255-6565 x4445

114

Bibliography

APN01. Stanislaw Ambroszkiewicz, Wojciech Penczek, and Tomasz Nowak. To-
wards Formal Specification and Verification in Cyberspace. In FAABS
’00: Proceedings of the First International Workshop on Formal Ap-
proaches to Agent-Based Systems-Revised Papers, pages 16–32, London,
UK, 2001. Springer-Verlag.

Bis81. Matt Bishop. Hierarchical Take-Grant Protection Systems. In SOSP
’81: Proceedings of the eighth ACM symposium on operating systems
principles, pages 109–122, New York, NY, USA, 1981. ACM.

Bis95. Matt Bishop. Theft of Information in the Take-Grant Protection Model.
Journal of Computer Security, 3(4):283–309, 1994/1995.

Bis96. Matt Bishop. Conspiracy and Information Flow in the Take-Grant Pro-
tection Model. Journal of Computer Security, 4(4):331–359, 1996.

Bis03. Matt Bishop. Computer Security: Art and Science. Boston, MA :
Addison-Wesley, 2003.

BM07. R. Baldwin and B. Mullins. Modeling and Analysis of Cyber Security,
Tracking, and Targeting using Modal Logics. January 2007.

BS79. Matt Bishop and Lawrence Snyder. The transfer of information and
authority in a protection system. In SOSP ’79: Proceedings of the seventh
ACM symposium on Operating systems principles, pages 45–54, New
York, NY, USA, 1979. ACM.

CM06. J. Cheng and J. Miura. Deontic Relevant Logic as the Logical Basis for
Specifying, Verifying, And Reasoning About Information Security and
Information Assurance, 2006.

CS96. F. Cuppens and C. Saurel. Specifying a Security Policy: a Case Study. In
CSFW ’96: Proceedings of the 9th IEEE workshop on Computer Security
Foundations, page 123, Washington, DC, USA, 1996. IEEE Computer
Society.

FB96. J. Frank and M. Bishop. Extending the Take-Grant Protection System.
Technical report, Computer Security Laboratory, University of California
Davis, December 1996.

For03. Formal Methods Program. Formal Methods Roadmap: PVS, ICS, and
SAL. Technical Report SRI-CSL-03-05, Computer Science Laboratory,
SRI International, Menlo Park, CA, October 2003.

Gar07. James Garson. Modal Logic. The Stanford Encyclopedia of Philosophy.
Summer 2007.

115

HC96. G. David Hughes and M. J. Cresswell. A new introduction to modal logic.
Routledge, London, New York, 1996.

HR04. Michael Huth and Mark Ryan. Logic in computer science: modelling
and reasoning about systems. Cambridge University Press, Cambridge,
2004.

JMS06. G. Baramidze A. Sheth J. Miller, P. Fishwick and G. Silver. Ontolo-
gies for Modeling and Simulation: An Extensible Framework. Technical
Report Technical Report No. UGA-CS-LSDIS-TR-06-011, University of
Georgia, Athens, Department of Computer Science, University of Geor-
gia, Athens, Georgia, 2006.

Kol02. G. Kolaczek. Application of Deontic Logic in Role-Based Access Control.
International Journal of Applied Mathematics and Computer Science,
12(2), 2002.

LM82. A. Lockman and N. Minsky. Unidirectional Transport of Rights and
TakeGrant Control. Software Engineering, IEEE Transactions on, SE-
8(6):597–604, 1982.

LZ97. J. Leiwo and Y. Zheng. A Formal Model to Aid Documenting and Har-
monizing of Information Security Requirements. In SEC’97: Proceedings
of the IFIP TC11 13 international conference on Information Security
(SEC ’97) on Information security in research and business, pages 25–38,
London, UK, UK, 1997. Chapman & Hall, Ltd.

Mar93. D. Marc. A Petri net representation of the Take-Grant model. Proceed-
ings Computer Security Foundations Workshop VI, 1993 , pages 99–108,
15-17 Jun 1993.

Min78. N. Minsky. An Operation-Control Scheme for Authorization in Com-
puter Systems. International Journal of Computing and Information
Sciences, June 1978.

Nat96. National Institute Of Standards and Technology. An Introduction to
Computer Security: The NIST Handbook. Technical Report Special
Publication 800-12, National Institute of Standards and Technology,
Technology Administration,U.S. Department of Commerce, 1996.

Oak08. Oak Ridge National Laboratory. Oak Ridge National Laboratory -
Overviews: http://www.ioc.ornl.gov/overviews.shtml, accessed 29 Jan
2008. website, Jan 2008.

OS03. Sam Owre and Natarajan Shankar. The PVS Prelude Library. Techni-
cal Report SRI-CSL-03-01, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, March 2003.

116

OSRSC99a. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Language Reference. Computer Science Laboratory, SRI International,
Menlo Park, CA, September 1999.

OSRSC99b. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
System Guide. Computer Science Laboratory, SRI International, Menlo
Park, CA, September 1999.

Pad90. L.J. La Padula. Formal modeling in a generalized framework for ac-
cess control. Proceedings Computer Security Foundations Workshop III,
1990. , pages 100–109, 12-14 Jun 1990.

SM93. P. Syverson and C. Meadows. A logical language for specifying cryp-
tographic protocol requirements. Proceedings. 1993 IEEE Computer
Society Symposium on Research in Security and Privacy, pages 165–177,
24-26 May 1993.

SM03. A. Sabelfeld and A.C. Myers. Language-Based Information-Flow Secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
Jan 2003.

Sny81. Lawrence Snyder. Theft And Conspiracy In The Take-Grant Protection
Model. Journal of Computer and System Sciences, 23(3):333–347, 1981.

SORSC99. N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Prover Guide. Computer Science Laboratory, SRI International, Menlo
Park, CA, September 1999.

SRI08. SRI International. Formalware at SRI Website. 2008.

TL04. Mahesh V. Tripunitara and Ninghui Li. Comparing the Expressive Power
of Access Control Models. In CCS ’04: Proceedings of the 11th ACM
conference on Computer and communications security, pages 62–71, New
York, NY, USA, 2004. ACM Press.

Wan05. Andy Ju An Wang. Information Security Models and Metrics. In ACM-
SE 43: Proceedings of the 43rd annual Southeast regional conference,
pages 178–184, New York, NY, USA, 2005. ACM Press.

117

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2008 Master’s Thesis May 2006 — Mar 2008

Applying Automated Theorem Proving to Computer Security

Kelly McElroy, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/08-16

Dr. Steve Rogers
AFRL/RY
2241 Avionics Circle
WPAFB, OH 45434
674–9891
steven.rogers@wpafb.af.mil

Approval for public release; distribution is unlimited.

While more and more data is stored and accessed electronically, better access control methods need to be implemented
for computer security. Formal modelling and analysis have been successfully used in certain areas of computer systems,
such as verifying the security properties of cryptographic and authentication protocols. However, formal models for
computer systems in cyberspace, like networks, have hardly advanced. A highly regarded graduate textbook cites the
Take-Grant model created in 1977 as one of the “current” examples of security modelling and analysis techniques. This
model is rarely used in practice though. This research implements the Take-Grant Protection model’s four de jure rules
and Can Share predicate in the Prototype Verification System (PVS) which automates model checking and theorem
proving. This facilitates the ability to test a given Take-Grant model against many systems which are modelled using
digraphs. Two models, one with error checking and one without, are created to implement take-grant rules. The first
model that does not have error checking incorporated requires manual error checking. The second model uses recursion
to allow for the error checking. The Can Share theorem requires further development.

Take-Grant Protection Model, Prototype Verification Model (PVS)

U U U UU 117

Dr. Rusty O. Baldwin

(937) 255–3636, ext 4445, rusty.baldwin@afit.edu

